
CS450, HW3—RSA Encryption 1

CS450 – Structure of Higher Level Languages
HW3

RSA Encryption

This assignment is based on the assignment described here:
https://mitpress.mit.edu/sites/default/files/sicp/psets/ps3/readme.html

Public-Key Encryption and Digital Signatures

The ideas of public-key encryption and digital signatures were discovered only in 1976. But they
already play a fundamental role as a way to achieve private communication in a world that relies
increasingly upon digital information. Interestingly, the fact that there are fast algorithms for
exponentiation and for testing prime numbers (sections 1.2.4–1.2.6 of the text) lies at the root of
RSA—the most popular method for implementing public-key encryption. In this problem set you
will implement a version of the RSA system. By doing so, you will gain experience with some
algorithms that although simple, have immense practical importance.1 Section 1 of this handout
desccribes how the system works. Section 2 contains exercises that you should be prepared to
discuss in tutorial. Section 3 contains background for the lab assigment, and section 4 is the actual
lab assignment.

1. The RSA System

People have been using secret codes for thousands of years; for this reason it is surprising that in
1976, Whitfield Diffie and Martin Hellman at Stanford University discovered a major new concep-
tual approach to encryption and decryption; public-key cryptography.2

Cryptography systems are typically based on the notion of using keys for encryption and decryption.
An encryption key specifies the method for converting the original message into an encoded form.
A corresponding decryption key describes how to undo the encoding. In traditional cryptographic
systems, the decryption key is identical to the encryption key, or can be readily derived from it.
As a consequence, if you know how to encrypt messages with a particular key then you can easily
decrypt messages that were encrypted with that key.

Diffie and Hellman’s insight was to realize that there are cryptographic systems for which knowing
the encryption key gives no help in decrypting messages; that is, for which there is no practical way
to derive the decryption key from the encryption key. This is of immense practical importance.
In traditional cryptographic systems, someone can send you coded messages only if the two of
you share a secret key. Since anyone who learns that key would be able to decrypt the messages,
keys must be carefully guarded and transmitted only under tight security. In Diffie and Hellman’s
system, you can tell your encryption key to anyone who wants to send you messages, and not worry

1This problem set was designed in 1987 by Ruth Shyu and Eric Grimson and revised in 1992 by David LaMacchia
and Hal Abelson.

2W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions on Information Theory, IT-22:6,
1976, pp 644–654.

https://mitpress.mit.edu/sites/default/files/sicp/psets/ps3/readme.html

CS450, HW3—RSA Encryption 2

about key security at all. For even if everyone in the world knew your encryption key, no one
could decrypt messages sent to you without knowing your decryption key, which you keep private
to yourself. Diffie and Hellman called such a system a public-key cryptography system.

A few months after Diffie and Hellman announced their idea, Ronald Rivest, Adi Shamir, and
Leonard Adelman at MIT discovered a workable method for implementing it. This RSA cryptog-
raphy system has remained the most popular technique for public-key cryptography.

The theory behind RSA

RSA uses integers to represent groups of characters3 and uses special functions that transform
integers to integers.

In the RSA scheme, you select two large prime numbers, p and q. You then define

n = pq (1)

m = (p− 1)(q − 1). (2)

You also select a number e, such that gcd(e,m) = 1. Your public key, which you can advertise to
the world, is the pair of numbers n and e. Anyone who wants to send you a message s (represented
by an integer) encrypts it using the following RSA transformation defined by n and e:

encrypted message = s to the power of e, modulo n

or
S = (se) mod n.

If you receive an encrypted message S, you decrypt it by performing another RSA transformation
with n and a special number d:

s′ = encrypted message to the power of d, modulo n

or
s′ = (Sd) mod n.

The number d is chosen to have the property that s = s′ for every message s,4 namely,

s = (se)d mod n.

It can be shown that the number d that has this property is the one for which

de = 1 mod m (3)

that is, for which d is the multiplicative inverse of e modulo m.5 It turns out that it is easy to
compute d efficiently if you know e and m = (p− 1)(q − 1).

3For example, the ASCII standard representation of a character is a 7-bit integer. In this problem set we will
represent a block of four characters as a 28-bit integer (0 ≤ s < 228) by concatenating the ASCII codes of the four
characters.

4Actually, this is true only if gcd(s, n) = 1. If n is the product of two large primes, then almost all messages s < n
will satisfy this.

5This is a basic result in number theory , we’ll just ask you to take it on faith.

CS450, HW3—RSA Encryption 3

Thus, to generate a pair of RSA keys, you choose prime numbers p and q, compute n = pq, choose
e, and use this to compute d. You publish the pair n and e as your public key, but keep d secret
to yourself. People send you encrypted messages using the pair (n, e). You decrypt these messages
using the pair (n, d).

The security of the RSA system is based on the fact that even if someone knows e and n, the most
efficient way known for them to decrypt a message is to factor n to find p and q, then use these to
compute m, then use e and m to compute d.

That is to say, cracking an RSA code is, as far as anyone knows, as difficult a computational
problem as factoring n into its prime factors p times q. And although there has been a tremendous
amount of research on factoring, factoring arbitrary large numbers is not a computationally feasible
task. For example, factoring n = pq where p and q are each 200-digit primes, even with the
today’s best factoring algorithms, would require running for more than 100 years on today’s fastest
supercomputers.6

Digital signatures; Encrypting and signing

In their 1976 paper, Diffie and Hellman suggested applying public-key encryption to solving another
important problem of secure communication. The problem is this: suppose you want to send a
message by electronic mail. How can people who receive the message be sure that it really comes
from you—that it is not a forgery? What is required is some scheme for marking a message in a
way that cannot be forged. Such a mark is called a digital signature.

Diffie and Hellman’s suggestion was to proceed as follows: take the message and apply a publicly
agreed upon compression function (also called a hash function) that transforms the message to a
single, relatively small number. In general, there will be many messages that produce the same
hash value. Now transform the hash value using your private key. The transformed hash value is
your digital signature, which you transmit along with the message. Anyone who receives a message
can authenticate the signature by transforming it using your public key and checking that this gives
the same result as applying the compression function to the message.

The reason this scheme works is that anyone who wants to forge a message claiming to be from
you must produce a number that, when transformed by your public key, matches the hash value.
Anyone can compute the hash value, since the compression function is assumed to be public. But
since you are assumed to be the only one who knows your private key, only you can produce
the number which is transformed to the hash value by your public key. Trying to forge a digital
signature is essentially the same task as trying to crack a public-key encrypted message.

An even cuter idea works as follows: Suppose Barbara wants to send George a signed message
that only George will be able to read. She encrypts the message using George’s public key. Then
she signs the encrypted result using her own private key. When George receives a message that is
supposed to be from Barbara, he first uses Barbara’s public key to authenticate the signature, then
decrypts the message using his own private key. Figure 1 gives an overview of the method.

6No one has actually proved that cracking an RSA code is as difficult a problem as factoring, but no other method
for cracking these codes has been discovered. In addition, some computer scientists believe that it may be possible
to prove that there can be no fast (e.g., logarithmic time) algorithms for factoring. Given the popularity of RSA,

CS450, HW3—RSA Encryption 4

unencrypted
message

encrypted
messageencrypt with

recipient’s
public key

compress
with hash
function

unencrypted
signature

encrypt with
sender’s
private key

decrypt with
recipient’s
private key

decrypted
message

compress
with hash
function

unencrypted
signature

decrypt
with
sender’s
public
key

encrypted
signature

number that
should match
unencrypted
signature

Figure 1: Encryption with digital signature.

CS450, HW3—RSA Encryption 5

Notice what this accomplishes: George can be sure that only someone with Barbara’s private key
could have sent the message. Barbara can be sure that only someone with George’s private key can
read the message. This is accomplished without exchanging any secret information between George
and Barbara. It’s this capacity for achieving secure communication without having to worry about
exchanging secret keys that makes public-key cryptography such an important technique.

Implementing RSA

The primary thing we need in order to implement RSA is the fast exponentiation algorithm from
section 1.2.6 of the text:

(define (expmod b e m)

(cond ((zero? e) 1)

((even? e)

(remainder (square (expmod b (/ e 2) m)) m))

(else (remainder (* b (expmod b (- e 1) m)) m))))

We’ll assume that an RSA key is represented as a pair—modulus and exponent:

(define make-key cons)

(define key-modulus car)

(define key-exponent cdr)

The basic RSA transformation is then

(define (RSA-transform number key)

(expmod number (key-exponent key) (key-modulus key)))

Generating prime numbers

To generate RSA keys, we first of all need a way to generate primes. The most straightforward
way is to pick a random number in some desired range and start testing successive numbers from
there until we find a prime. The following procedure starts searching at a randomly chosen integer
between start and start + range:

(define (choose-prime smallest range)

(let ((start (+ smallest (choose-random range))))

(search-for-prime (if (even? start) (+ start 1) start))))

(define (search-for-prime guess)

(if (fast-prime? guess 2)

guess

(search-for-prime (+ guess 2))))

(define choose-random

;; restriction of Scheme RANDOM primitive

(let ((max-random-number (expt 10 18)))

(lambda (n)

(random (floor->exact (min n max-random-number))))))

The test for primality is the Fermat test, described in section 1.2.6:

the discovery of such an algorithm would result in a massive security breakdown for banks, businesses, and other
organizations that use RSA.

CS450, HW3—RSA Encryption 6

(define (fermat-test n)

(let ((a (choose-random n)))

(= (expmod a n n) a)))

(define (fast-prime? n times)

(cond ((zero? times) true)

((fermat-test n) (fast-prime? n (- times 1)))

(else false)))

Generating RSA key pairs

Now we can generate a public RSA key and matching private key. We’ll represent these as a pair:

(define make-key-pair cons)

(define key-pair-public car)

(define key-pair-private cdr)

The following procedure generates an RSA key pair. It picks primes p and q that are in the range
from 214 to 215 so that n = pq will be in the range 228 to 230, which is large enough to encode four
characters per number.7 After picking the primes, it computes n and m according to equations (1)
and (2). It then chooses an exponent e and finds a number d that satisfies equation (3).

(define (generate-RSA-key-pair)

(let ((size (expt 2 14)))

(let ((p (choose-prime size size))

(q (choose-prime size size)))

(if (= p q) ;check that we haven’t chosen the same prime twice

(generate-RSA-key-pair) ;(VERY unlikely)

(let ((n (* p q))

(m (* (- p 1) (- q 1))))

(let ((e (select-exponent m)))

(let ((d (invert-modulo e m)))

(make-key-pair (make-key n e) (make-key n d)))))))))

The exponent e can be any random number 0 < e < m with gcd(e,m) = 1. The gcd procedure is
given in section 1.2.5 of the notes, but is actually a Scheme primitive.

(define (select-exponent m)

(let ((try (choose-random m)))

(if (= (gcd try m) 1) ;if gcd is not 1, then try again

try

(select-exponent m))))

Computing the multiplicative inverse

The number d required for the RSA key must satisfy

de = 1 mod m

7We’re using such small values of n for this problem set because we want you to play around with cracking an
RSA system. By starting with larger random numbers, you can use the same method to produce a system that really
is secure.

CS450, HW3—RSA Encryption 7

Using the definition of equality modulo m, this means that d must satisfy

km + de = 1

where k is a (negative) integer. One can show that a solution to this equation exists if and only if
gcd(e,m) = 1. The following procedure generates the required value of d, assuming that we have
another procedure available which, given two integers a and b, returns a pair of integers (x, y) such
that ax + by = 1.8

(define (invert-modulo e m)

(if (= (gcd e m) 1)

(let ((y (cdr (solve-ax+by=1 m e))))

(modulo y m)) ;take y modulo m, in case y was negative

(error "gcd not 1" e m)))

Solving ax + by = 1 can be accomplished by a nice recursive trick that is closely related to the
recursive GCD algorithm in section 1.2.5 of the text. Let q be the quotient of a by b, and let r be
the remainder of a by b, so that

a = bq + r

Now (recursively) solve the equation
bx̄ + rȳ = 1

and use x̄ and ȳ to generate x and y. We’ll leave to you the details of how to write the actual
procedure. (Hint: It involves the extended GCD algorithm, taught in discrete math).

Encrypting and decrypting messages

Finally, to use RSA, we need a way to transform between strings of characters and numbers.
The code for this problem set includes procedures string->intlist and intlist->string that
convert between character strings and lists of integers. Each integer (between 0 and 228) encodes
4 successive characters from the message. If the number of characters is not a multiple of 4, the
message is padded by appending spaces:

(string->intlist "This is a string.")

;Value: (242906196 69006496 245157985 217822450 67637294)

(intlist->string ’(242906196 69006496 245157985 217822450 67637294))

;Value: "This is a string. "

The code for these two procedures is included with the problem set code, but you are not responsible
for it. You may want to look at it if you are interested in how character strings can be manipulated
in Scheme.

To encrypt a message, we transform the message into a list of numbers and convert the list of
numbers using the RSA process together with one key in the key pair.

(define (RSA-encrypt string key1)

(RSA-convert-list (string->intlist string) key1))

8The Scheme primitive modulo, which we use to insure a positive result, is the same as remainder, except on
negative arguments: (remainder -12 7) is −5, while (modulo -12 7) is 2. In general, (modulo a b) always has the
same sign as b, while (remainder a b) always has the same sign as a.

CS450, HW3—RSA Encryption 8

You might guess that the right way to encode the list of numbers would be to encode each number
in the list separately. But this doesn’t work well. (See exercise 5 below.) Instead, we encrypt the
first number, subrract that from the second number (modulo n) and encrypt the result, add that to
the next number and encrypt the result, and so on, so that each number in the resulting encrypted
list will depend upon all the previous numbers:

(define (RSA-convert-list intlist key)

(let ((n (key-modulus key)))

(define (convert l sum)

(if (null? l)

’()

(let ((x (RSA-transform (modulo (- (car l) sum) n)

key)))

(cons x (convert (cdr l) x)))))

(convert intlist 0)))

We’ll leave it to you to implement the analogous RSA-unconvert-list procedure that undoes this
transformation using the other key in the key pair. Then we have

(define (RSA-decrypt intlist key2)

(intlist->string (RSA-unconvert-list intlist key2)))

Finally, to generate digital signatures for encrypted messages, we need a standard compression
function. In this problem set, we’ll simply add the integers modulo 228.9

(define (compress intlist)

(define (add-loop l)

(if (null? l)

0

(+ (car l) (add-loop (cdr l)))))

(modulo (add-loop intlist) (expt 2 28)))

9In practice, people use more complicated compression schemes than this. You might want to think about why.

CS450, HW3—RSA Encryption 9

3. Background for a Programming Assignment

Ministry of Information

To: Ross (the Boss)
From: Rupert

So far we’ve been pretty successful. I really liked the way you arranged that cattle-futures deal, and
the creative accounting by our mole in the Rose Law firm has really done wonders. But I’m getting
concerned about the security of our network. My $4M book deal with the Salamander got out before
the optimal moment. I hope we haven’t been cracked by the entity in Fort Meade.

Central Control

To: Rupert
From: Ross

You’re absolutely right about the need for security. I’ve gotten in touch with some people I know at
Family Values Communications. FVC markets a system that encrypts and authenticates messages using
a technique called RSA. The FVC people say they can build an encryption system for the modest fee of
$120M.

Ministry of Information

To: Ross
From: Rupert

$120 million?!? You have to be kidding. That’s almost as much as it cost us to replace Gorby with
Boris. I contacted Chuck (the Vest) at New England Research and Development (His cover is President
of MIT.) to ask his advice. As you know, he helped us arrange the White House mail system.10 Chuck
says he can do the job for us, for a minor consideration. He needs help getting John (the German)
installed in the entity in Virginia.

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Office of the President

Dear Albert and Gerry:

I have received a request of the highest priority asking that CS450 ’s next problem set involve RSA
cryptography and digital signatures. Sorry for the rush. I’ve managed to get some of the code from
Family Values Communications, so at least the students won’t be starting from scratch. Thanks!

Chuck Vest

10This is really true. The electronic mail connection to the White House was set up by people at the MIT AI Lab.

CS450, HW3—RSA Encryption 10

And now, for the programming assignment!

Guidelines and delivery

• You should use the handed out rsa-orig.scm file and NOT the one from the original scheme
assignment.

• Most of the background code is already written, and you should fill out the rest. Please keep
all your code in one file and don’t change the file name!

• Don’t use modifiers such as set! and its likes. You can use any primitive or user-defined
function you want and was covered in class.

• Write your code in R5RS and not in racket. No modules please.

Programming questions

1. Our friends at FVC also sent us a procedure that generates RSA key pairs: the public key
and the associated private key. But they are missing the procedure that solves equations of
the form ax + by = 1. Define this procedure, called solve-ax+by=1. It takes two integer
arguments a and b whose GCD is assumed to be 1. It returns a pair of integers x and y.
If you have correctly defined this procedure, you should now be able to call the procedure
generate-RSA-key-pair (a procedure of zero arguments) to produce randomly chosen key
pairs. Generate a key pair for yourself. Turn in a listing of your solve-ax+by=1 procedure
together. To test the code, evaluate

(define test-public-key1 (key-pair-public test-key-pair1))

(define result1 (rsa-encrypt "This is a test message." test-public-key1))

Result1 should be the list

(209185193 793765302 124842465 169313344 117194397 237972864)

test-key-pair1 is a sample RSA key pair that we have generated for you to test your code
with. Keep in mind that punctuation and upper vs. lower case are significant in the test
string.

2. Unfortunately, the code forwarded to us by President Vest is missing one of the procedures—
RSA-unconvert-list—required to decrypt messages. Implement this procedure, which takes
as arguments a list of integers to decode and a decoding key, and returns a list of integers,
undoing the transformation implemented by RSA-convert-list. Hint: This procedure is
very similar in form to RSA-convert-list. If you find yourself doing something much more
complicated, then you are barking up the wrong tree—ask for help if necessary.

To test your procedure, try

(define test-private-key1 (key-pair-private test-key-pair1))

(RSA-unconvert-list result1 test-private-key1)

You should obtain the result

(242906196 69006496 213717089 229128819 205322725 67875559)

CS450, HW3—RSA Encryption 11

If that works, then you should be able to evaluate

(RSA-decrypt result1 test-private-key1)

to obtain the original test message (except for some trailing spaces). We’ve also supplied a
second key pair for you to work with, which you can obtain by evaluating

(define test-public-key2 (key-pair-public test-key-pair2))

(define test-private-key2 (key-pair-private test-key-pair2))

Turn in a listing of your procedure. Your code will be tested on several messages.

3. Implement the method for encrypting and signing messages described in section 1. Start
by specifying a (very) simple data structure called a signed-message that consists of a
message part and a signature part. Now define a procedure encrypt-and-sign that takes as
arguments a message to be encrypted and signed, the sender’s private key, and the recipient’s
public key. The procedure should encrypt the message, compute a digital signature for it,
and combine these to produce a signed message.

As a test, try

(define result2

(encrypt-and-sign "Test message from user 1 to user 2"

test-private-key1

test-public-key2))

You should obtain a signed message whose message part is

(499609777 242153055 12244841 376031918 242988502 31156692 221535122 463709109 468341391)

and whose signature part is 15378444.

4. Now implement the inverse transformation authenticate-and-decrypt, which takes as ar-
guments the received signed message, the sender’s public key, and the recipient’s private key.
If the signature is authentic the procedure should produce the decrypted message. If the
signature is not authentic the procedure should indicate this. Test your procedures by trying

(authenticate-and-decrypt result2 test-public-key1 test-private-key2)

to recover the original message. Turn in a listing of your procedures together with a demon-
stration that they work. (Don’t forget to demonstrate that they catch non-authentic signa-
tures.)

5. You now have a full implementation of an RSA cryptographic system, complete with facilities
for encryption, decryption, digital signatures and signature authentication, and generating
new keys. Since the implementation uses such small primes, you should also be able to
crack the system. In order to crack an RSA system, recall, you must factor the modulus
n into its component prime factors p and q. You can do this using the smallest-divisor

procedure that is included in the code.11 Write a procedure crack-rsa that, given a public
key, returns the associated private key. Test your procedure using the pairs test-key-pair1
and test-key-pair2 to show that it generates the correct private keys, given the public keys.
Turn in a listing of your procedure, together with demonstrations that it works.

11When you have found one prime divisor p, the other divisor is q = n/p.

CS450, HW3—RSA Encryption 12

6. The public key for sending messages to Donald Trump is defined in the problem set code:
(define donald-trump-public-key (make-key 833653283 583595407))

(define mike-pence-public-key (make-key 655587853 463279441))

Bernie Sanders would like us to help him trick the Trump administration into taking unpop-
ular stands. Forge a message from Trump to Pence, asking Pence to announce that he and
Trump are planning a major tax increase. The message should be:

”Announce that we’re increasing taxes by 100%! Biggest increase ever! TREMENDOUS
increase!”

(This should be the exact message, sans quotes but case sensitive. Every space is a single
space). Write a wrapper procedure trump2pence that takes a single argument which is the
fake message and creates a signed message that looks like it was sent from Trump to Pence.
Show the resulting message, the encryption, and the signature, and demonstrate that the
message will be decrypted by Pence using his private key and Trump’s public key. Note:
The wrapper procedure should be very short. It’s for testing purposes only.

Written exercises

Note! This part

1. Demonstrate that your solve-ax+by=1 procedure works by finding integers x and y that
satisfy the equation:

233987973x + 41111687y = 1

Attach the values of x and y.

2. Define two more pairs of public and private keys using the attached code and copy them over
here.

3. Yesterday Joe Biden received the following message:
(521793772 221028613 52459926 511097780 523838672 443241014 511806122 640398158 370564768

315158823 38083336 483957005 194461903 678652729)

The signature was 20555018. (These values are defined in the problem set code as received-
mystery-message and received-mystery-signature.) Fortunately for us, a friend has man-
aged to obtain Biden’s private key:

(define joe-biden-private-key (make-key 718616329 129033029))

The following public keys are also defined:
(define donald-trump-public-key (make-key 833653283 583595407))

(define mike-pence-public-key (make-key 655587853 463279441))

(define nancy-pelosi-public-key (make-key 507803083 445001911))

(define aoc-public-key (make-key 865784123 362279729))

(define michael-cohen-public-key (make-key 725123713 150990017))

(define ivanka-trump-public-key (make-key 376496027 270523157))

(define bernie-sanders-public-key (make-key 780450379 512015071))

(define kamala-harris-public-key (make-key 412581307 251545759))

(define joe-biden-public-key (make-key 718616329 290820109))

CS450, HW3—RSA Encryption 13

Decrypt the message and identify who sent it. Write the resulting message and the name of
the sender in your answer. Show how you solved the problem.

4. Prepare some (3-4) appropriate forged messages between various people whose public keys
are listed above. Demonstrate that these messages will decrypt and authenticate correctly.
Be sure to say who the message is (purportedly) from, and to whom it should be sent. In
your answer show your code and your results - you can copy paste the input and output from
the Racket window.

5. The RSA system here is easy to crack because the primes are so small: n = pq is the product
of two primes each about 5 digits long. You can use the supplied procedure timed to see how
long it takes smallest-divisor to find factors. Evaluating, for example,

(timed smallest-divisor 780450379)

will find the smallest divisor of 780450379 and also print how long the computation took in sec-
onds. Check how long it takes to factor n for some of the values produced by generate-rsa-key-pair.
Based on this data, estimate how long it would take to crack an RSA code if we had used
primes that were 50 digits long; 100 digits long. Give your answer in seconds, minutes, days,
or years, whichever seems most appropriate. Obviously, it’s only a rough estimate, but base
it on the run time – both empirical and theoretical. Notice that scheme has an upper limit
for maximum integer. You probably won’t be able to test it on very large numbers. What I
expect is a well-reasoned answer based on the existing code..

	1. The RSA System
	The theory behind RSA
	Digital signatures; Encrypting and signing
	Implementing RSA
	Generating prime numbers
	Generating RSA key pairs
	Computing the multiplicative inverse
	Encrypting and decrypting messages

	3. Background for a Programming Assignment
	And now, for the programming assignment!
	Guidelines and delivery
	Programming questions

	Written exercises

