
CS450 - Structure of Higher Level Languages

Data Abstractions and Pairs

September 23, 2020



What to read in Chapter 1

We have already covered sections 1.1.1–1.2.4 and section 1.3.2
(lambda).
You should also read

1.3.1 Procedures as arguments. (Read this carefully.)

1.3.2 Lambda (We already did this.)

1.3.3 Processes as general methods.

1.3.4 Procedures as returned values.

These last two sections you can read quickly and not so carefully.

Nurit Haspel CS450 - Structure of Higher Level Languages



The let special form

Suppose we want to evaluate an expression like this:

f (x , y) = (x + y + xy)2 + (x + y − xy)2

It would be nice to be able to compute x + y and xy only once,
rather than twice. (x + y and xy are what compiler writers call
common subexpressions.) We can do this like this:

(define (f x y)

(let ((a (+ x y))

(b (* x y)))

(+ (square (+ a b))

(square (- a b))) ))

Nurit Haspel CS450 - Structure of Higher Level Languages



The let special form

Actually, the let special form is really “syntactic sugar” – it is
transformed internally as follows:

(let ((var1 exp1) ((lambda (var1 var2 ... varn)

(var2 exp2) ==> body)

... exp1 exp2 ... expn)

(varn expn))

body)

Nurit Haspel CS450 - Structure of Higher Level Languages



More Complex “Data Structures”

So far we’ve seen primitive expressions and functions.

We used abstractions to build higher order procedures.

Sometimes we want to “glue together” several data objects.

We can use abstraction to build compound data as well.

For example, suppose Scheme did not contain support for
fractions (i.e., for rational numbers represented as fractions).

A rational number is essentially a pair of numbers – a
numerator and a denominator.

We could represent them separately but it would be
complicated and confusing, especially if we want to define
arithmetic operations on rational numbers.

We’d need to keep track on which numerators and
denominators belong where...

We want to be able to “glue together” the two numbers.

Nurit Haspel CS450 - Structure of Higher Level Languages



Example – Rational Numbers

We could create a rational number package by writing procedures
of the following form:

A constructor

(make-rat n d)

Two selectors

(numer x)

(denom x)

Nurit Haspel CS450 - Structure of Higher Level Languages



Example – Rational Numbers

These procedures must be related in the following ways:

(numer (make-rat n d)) ==> n

(denom (make-rat n d) ==> d

(make-rat (numer x) (denom x)) ==> x

Assuming we have these procedures, we can construct procedures
to implement the usual operators. For instance, we know that

n1
d1

+
n2
d2

=
n1d2 + n2d1

d1d2

with the other usual formulas for the other arithmetic operations.

Nurit Haspel CS450 - Structure of Higher Level Languages



Operations on Rational Numbers

(define (add-rat x y)

(make-rat (+ (* (numer x)(denom y))

(* (numer y)(denom x)))

(* (denom x)(denom y)) ))

(define (sub-rat x y)

(make-rat (- (* (numer x)(denom y))

(* (numer y)(denom x)))

(* (denom x)(denom y)) ))

(define (mul-rat x y)

(make-rat (* (numer x)(numer y))

(* (denom x)(denom y)) ))

(define (div-rat x y)

(make-rat (* (numer x)(denom y))

(* (denom x)(numer y)) ))

Nurit Haspel CS450 - Structure of Higher Level Languages



Operations on Rational Numbers

and also

(define (equal-rat? x y)

(= (* (numer x)(denom y))

(* (denom x)(numer y)) ))

(define (print-rat x)

(display (numer x) "/" (denom x)) )

So everything works out fine, as long as we can implement the
constructor and the selectors.

Nurit Haspel CS450 - Structure of Higher Level Languages



Pairs

The basic constructors and selectors for data structures in Scheme
are these:

constructor: cons

selectors: car and cdr (read: could-er)

(define x (cons 1 2))

We say that cons creates a pair. With this definition,

(car x) ==> 1

(cdr x) ==> 2

Suppose we also define

(define y (cons 3 4))

(define z (cons x y))

Nurit Haspel CS450 - Structure of Higher Level Languages



Pairs

(car (car z)) ==> 1 ;; this is also produced by (caar z)

(car (cdr z)) ==> 3 ;; this is also produced by (cadr z)

So now we can implement our rational number package as follows:

(define (make-rat n d)

(cons n d))

(define (numer x)

(car x))

(define (denom x)

(cdr x))

(Incidentally, we could just as well have written

(define make-rat cons)

Nurit Haspel CS450 - Structure of Higher Level Languages



Pairs

Of course we have not dealt at all with questions of efficiency,
representations, and lowest terms.

For instance, should rational numbers be stored internally in
lowest terms, or should they only be put into lowest terms
when they are output?

There are tradeoffs to be made here.

Nurit Haspel CS450 - Structure of Higher Level Languages



Pairs

But in any case, we have the following hierarchy of objects and
procedures:

1 What the user sees is rational numbers, together with
arithmetic operations on them (add-rat, etc.).

2 Those arithmetic operations are implemented in terms of the
constructors and selectors (make-rat, etc.) and in terms of
Scheme’s primitive arithmetic operations on integers (+, etc.).

3 The constructors and selectors are implemented in terms of
Scheme’s primitive constructors and selectors (cons, car, and
cdr).

4 cons, car, and cdr are implemented in some fashion. In fact,
we have said nothing about how pairs are implemented in
Scheme.

Nurit Haspel CS450 - Structure of Higher Level Languages



What is Data?

What really is a pair? It could be implemented internally in
various ways.

It could be any data structure so long as cons, car, and cdr

work together properly.

In fact, it might not be a data structure at all, but a function:

(define (cons x y)

(define (dispatch m)

(cond ((= m 0) x)

((= m 1) y)

(else (error "Improper argument")) ))

dispatch)

(define (car z) (z 0))

(define (cdr z) (z 1))

Nurit Haspel CS450 - Structure of Higher Level Languages



Another Way to Define cons

(define (cons x y)

(lambda (m)

(cond ((= m 0) x)

((= m 1) y)

(else (error "Improper argument")) )))

Thus in Scheme, the difference between data and procedures fades
away. This will be very important in this course.

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing cons

The conventional way to represent a pair (say, (cons 1 2)) is like
this:

b b

1 2

or b

1 2

Nurit Haspel CS450 - Structure of Higher Level Languages



Lists (or sequences)

The empty list is represented in a Scheme expression as ’().
(We’ll talk about that single quote mark later.)

The list consisting of the numbers 1, 2, 3, 4 in that order is
created by the constructor (list 1 2 3 4).

This is syntactic sugar for the following:

(cons 1

(cons 2

(cons 3

(cons 4

’() ))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Lists (or sequences)

That is, it is turned internally into the following data structure:

b

1 b

2 b

3 b

4 ()

or

1 2 3 4

b b b b b b b

Nurit Haspel CS450 - Structure of Higher Level Languages



Lists (or sequences)

So a list is actually constructed internally out of pairs.

That is, it’s really a special kind of binary tree.

On output, pairs are represented with dots. For instance:

==> (cons 1 2)

(1 . 2)

==>

However, when the data structure is actually a list, it is
represented as such.

Nurit Haspel CS450 - Structure of Higher Level Languages



Lists (or sequences)

The above list could be represented on output as

(1 . (2 . (3 . (4 . ()))))

But that’s not what actually happens:

==> (list 1 2 3 4)

(1 2 3 4)

==> (cons 1

(cons 2

(cons 3

(cons 4

’() ))))

(1 2 3 4)

==>

Nurit Haspel CS450 - Structure of Higher Level Languages



Display vs. Representation

Internal Data Structure Output Representation Input Representation

b

1 b

2 b

3 4 (1 2 3 . 4) (cons 1 (cons 2 (cons 3 4)))

b

1 b

2 b

b

3 4

()

(1 2 (3 . 4)) (list 1 2 (cons 3 4))
b

1 b

b

2 b

3 ()

b

4 ()

(1 (2 3) 4) (list 1 (list 2 3) 4)

Nurit Haspel CS450 - Structure of Higher Level Languages



Display vs. Representation (box + pointer)

Internal Data Structure Output Representation Input Representation

1 2 3 4

b b b b b b

(1 2 3 . 4) (cons 1 (cons 2 (cons 3 4)))

1 2

3 4

b b b b b

b b

(1 2 (3 . 4)) (list 1 2 (cons 3 4))

1

2 3

4

b b b b b

b b b

(1 (2 3) 4) (list 1 (list 2 3) 4)

Nurit Haspel CS450 - Structure of Higher Level Languages



Internal vs. Representation

Note that if

(define x (list 1 2 3 4))

Then

(car x) is 1 an element of the list
(cdr x) is (2 3 4) the rest of the list

and further,

(cons 10 x) is (10 1 2 3 4)

(caddr x) is 3
(cddddr x) is ()

Nurit Haspel CS450 - Structure of Higher Level Languages



Procedures that manipulate lists

(define (count-down-from n)

(cond ((= n 0) (display 0) (newline))

(else (display n) (newline)

(count-down-from (- n 1))) ))

Question: Why can’t we just use “if” here?

(define (count-up-to n)

(cond ((= n 0) (display 0)(newline))

(else (count-up-to (- n 1))

(display n)(newline)) ))

(define (add-elements items)

(if (null? items)

0

(+ (car items) (add-elements (cdr items))) ))

Nurit Haspel CS450 - Structure of Higher Level Languages



Procedures that manipulate lists

(define (add-squares items)

(if (null? items)

0

(+ (square (car items))

(add-squares (cdr items))) ))

(define (add-transformed items func)

(if (null? items)

0

(+ (func (car items))

(add-transformed (cdr items) func)) ))

(define (list-ref items n)

(if (= n 0)

(car items)

(list-ref (cdr items) (- n 1)) ))

Nurit Haspel CS450 - Structure of Higher Level Languages



Procedures that manipulate lists

(define (length items)

(if (null? items)

0

(+ 1 (length (cdr items))) ))

Here is an iterative form of length:

(define (length items)

(length-iter items 0))

(define (length-iter items result)

(if (null? items)

result

(length-iter (cdr items) (+ result 1)) ))

Nurit Haspel CS450 - Structure of Higher Level Languages



Procedures that manipulate lists

(define (append x y)

(if (null? x)

y

(cons (car x) (append (cdr x) y)) ))

==> (define squares (list 1 4 9 16 25))

==> (define odds (list 1 3 5 7 9))

==> (append squares odds)

(1 4 9 16 25 1 3 5 7 9)

==>

Nurit Haspel CS450 - Structure of Higher Level Languages



Procedures that manipulate lists

See a pattern here? We have a function f, we apply it to the
car and then recursively to the cdr .

Most examples we saw behave in a similar way, so we can
abstract even more...

Write a higher order procedure that takes a function and
applies it to a sequence.

(define (map func sequence)

(if (null? sequence)

’()

(cons (func (car sequence))

(map func (cdr sequence))) ))

Nurit Haspel CS450 - Structure of Higher Level Languages



Procedures that manipulate lists

==> (map abs (list -10 2.5 -11.6 17))

(10 2.5 11.6 17)

==> (map (lambda (x) (* x x))

(list 1 2 3 4))

(1 4 9 16)

==>

(define (filter predicate sequence)

(cond ((null? sequence) ’())

((predicate (car sequence))

(cons (car sequence)

(filter predicate (cdr sequence))))

(else (filter predicate (cdr sequence))) ))

Nurit Haspel CS450 - Structure of Higher Level Languages


