
CS450 - Structure of Higher Level Languages

The quote Special Form; More Data Structures

October 5, 2020



Trees

cons cells (i.e., pairs) can be used to construct binary trees,
or in fact more general trees.

For instance, the list((1 2) 3 4) is represented internally as

b

b

1 b

2 ()

b

3 b

4 ()

but you can think of it as

b

b

1 2

3 4

Nurit Haspel CS450 - Structure of Higher Level Languages



Trees

In either case, we would write this as the Scheme expression

==> (list (list 1 2) 3 4)

That is, we have here three different representations of the same
thing:

The data structure as you (the user) think of it.

The way you represent this data structure as a Scheme
expression.

The way that Scheme represents this expression internally.

Nurit Haspel CS450 - Structure of Higher Level Languages



Trees

The way a Scheme expression is translated to the Scheme
internal form is fixed.

But the way you use Scheme expressions to represent your
own data structures is up to you.

The only thing you have to make sure of is that you can
translate consistently back and forth between the way you
think of your data structure and the Scheme expression for it
(and the Scheme representation of it).

Suppose we want to count the leaves in such a tree.

For our purposes here, the empty list terminal nodes don’t
count as leaves, but all the other terminal nodes do.

Nurit Haspel CS450 - Structure of Higher Level Languages



A Function to Count the Leaves

(define (countleaves x)

(cond ((null? x) 0)

((not (pair? x)) 1)

(else (+ (countleaves (car x))

(countleaves (cdr x)) )) ))

Now suppose we make the following definitions:

(define x (list 1 2 3))

(define y (list 4 5 6))

Nurit Haspel CS450 - Structure of Higher Level Languages



A Function to Count the Leaves

Watch what happens:

==> (append x y)

(1 2 3 4 5 6)

==> (cons x y)

((1 2 3) 4 5 6)

==> (list x y)

((1 2 3) (4 5 6))

Nurit Haspel CS450 - Structure of Higher Level Languages



The quote Special Form

This is a special form that inhibits evaluation. It can be
abbreviated as follows:

(quote <exp>) <=> ’<exp>

Thus, the following are all equivalent:

(quote (1 2 3 4)) ==> (1 2 3 4)

’(1 2 3 4) ==> (1 2 3 4)

(list 1 2 3 4) ==> (1 2 3 4)

Nurit Haspel CS450 - Structure of Higher Level Languages



The quote Special Form

On the other hand, suppose we define the following symbols:

(define a 1)

(define b 2)

(define c 3)

(define d 4)

Then we have

(quote (a b c d)) ==> (a b c d)

’(a b c d) ==> (a b c d)

(list a b c d) ==> (1 2 3 4)

(list is a procedure; it evaluates its arguments.)

Nurit Haspel CS450 - Structure of Higher Level Languages



Some Examples (same definitions of a and b)

==> (list a b)

(1 2)

==> (list ’a ’b)

(a b)

==> (list ’a b)

(a 2)

==> ’(a b)

(a b)

==> (car ’(a b c))

a

==> (cdr ’(a b c))

(b c)

Nurit Haspel CS450 - Structure of Higher Level Languages



Equality

There are three tests for equality in Scheme.

Corresponding to these, there are three tests to see whether
an object is a member of a list, and there are also three
selectors to find elements in a lookup table:

eq? eqv? equal?

memq memv member

assq assv assoc

member is defined like this:

(define (member item x)

(cond ((null? x) #f)

((equal? item (car x)) x)

(else (member item (cdr x))) ))

Nurit Haspel CS450 - Structure of Higher Level Languages



Equality

Thus, member evaluates to the sublist of x starting with item,
if there is one, and to the empty list otherwise.

memq and memv are defined similarly.

Note that the names of these three procedures don’t end with
“?” – this is because they do not generally return Booleans.

Nurit Haspel CS450 - Structure of Higher Level Languages



Equality

The semantics of the three forms of equality tests are as follows:

eq? checks only for pointer equality. That is,
(eq? <exp1> <exp2>) checks to see whether
<exp1> and <exp2> evaluate to objects that are at
the same location in memory. This is often not true,
and the result may surprise you. For example,
(eq? 2 2) evaluates to #f on most systems.

eqv? is the same, except that numbers, characters, and
symbols are now guaranteed to be “correct”. That is,
(eqv? 2 2) is guaranteed to be #t.

equal? checks to see that its two arguments after evaluation
are structurally the same, and that the leaves are
eqv? (In particular, a string is regarded as built up
out of characters, and so strings are handled
“correctly”.)

Nurit Haspel CS450 - Structure of Higher Level Languages



Equality

Note: The definitions above are taken from the R5RS
documentation. They may differ in modern day Dr. Racket
implementations of legacy scheme.

For this and other reasons, in practice, you should use equal?

and member.

The other forms are pretty much of historical interest only,
and often lead to confusion and bugs.

So just don’t use them.

See the discussion in R5RS for more information, if you are
interested in this.

Nurit Haspel CS450 - Structure of Higher Level Languages



The all-purpose lookup procedure: assoc

An association list is a list of pairs.

It is used as a lookup table, where the car of each pair is the
lookup key and the cdr is the value being looked up.

For instance, suppose we had the following association list:

(define alist

(list ’(skyscraper . noun) ’(go . verb)

’(from . preposition) ’(road . noun)))

The idea is that this represents a table holding the information
that from is a preposition, that go is a verb, and so on..

The function assoc is used to lookup elements in the table.

You have to be careful though, because it doesn’t return the
value – it returns the whole pair.

Nurit Haspel CS450 - Structure of Higher Level Languages



The all-purpose lookup procedure: assoc

For example:

(assoc ’from alist)

evaluates to the pair (from . preposition).

So in this case, the value you are looking for is really the cdr

of what is returned.

assoc is a primitive procedure in Scheme, but we could easily
write it like this:

(define (assoc key alist)

(cond ((null? alist) #f)

((equal? (caar alist) key)

(car alist))

(else (assoc key (cdr alist)))))

Nurit Haspel CS450 - Structure of Higher Level Languages



The all-purpose lookup procedure: assoc

There are also versions assq and assv that use eq? and
eqv? instead of equal?, but you will never need to use them.

The assoc function is very simple, but it is used all over the
place in Scheme. It’s very important.

It’s actually very common – and our text does this almost all
the time – to construct these lookup tables not as pairs but as
2-element lists, like this:

(define alist

(list ’(skyscraper noun) ’(go verb)

’(from preposition) ’(road noun)))

Nurit Haspel CS450 - Structure of Higher Level Languages



The all-purpose lookup procedure: assoc

With this kind of list (cdr (assoc ’from alist)) would
evaluate to the single-element list (preposition).

So you would have to do something like this to look up a
value:

(let ((value-as-list (assoc key alist)))

(cadr value-as-list))

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets

We need procedures that include the following:

union

intersection

element-of?

adjoin

Representing as an unordered list looks like this:

(define (element-of? x set)

(cond ((null? set) #f)

((equal? x (car set)) #t)

(else (element-of? x (cdr set))) ))

element-of? is O(n).

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets

(define (adjoin x set)

(if (element-of? x set)

set

(cons x set) ))

adjoin is O(n).

(define (intersection set1 set2)

(cond ((or (null? set1) (null? set2)) ’())

((element-of? (car set1) set2)

(cons (car set1) (intersection (cdr set1) set2)))

(else (intersection (cdr set1) set2)) ))

intersection is O(nm). (We usually say this is O(n2)).
The implementation of union is exercise 2.59 in the text.

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets as ordered lists

This can be done if the elements of which the sets are made
have some natural order – for instance, if they are all integers.

To make things simple, let us assume they are integers.

(define (element-of? x set)

(cond ((null? set) #f)

((= x (car set)) #t)

((< x (car set)) #f)

(else (element-of? x (cdr set))) ))

element-of? is O(n) (but more like n/2 than n).

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets as ordered lists

(define (intersection set1 set2)

(if (or (null? set1) (null? set2))

’()

(let ((x1 (car set1))

(x2 (car set2)))

(cond ((= x1 x2)

(cons x1

(intersection (cdr set1) (cdr set2))))

((< x1 x2)

(intersection (cdr set1) set2))

((> x1 x2) ;;; could be ‘‘else’’

(intersection set1 (cdr set2))) ))))

intersection is O(n), rather than O(n2).

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets as binary trees

This can also be done if the elements have a natural order.

Again, let us assume all the elements are integers.

Suppose we start with the empty set and insert the numbers
15, 5, 25, and 1, in that order.

The tree that gets constructed looks like this:

15

5

1

()()

()

25

() ()

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets as binary trees

If we then insert (i.e., “adjoin”) the number 7 to this set, we get

15

5

1

()()

7

()()

25

() ()

If instead of 7, we adjoin the number 3, we get

15

5

1

() 3

()()

()

25

() ()

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets as binary trees

Here is how this is implemented: We will represent the tree as a
recursive data structure: A tree consists of either

an empty list (in which case the tree is empty), or

the root node,
the left subtree, and
the right subtree.

and each subtree is itself a data structure of the same form.
(Thus, a leaf node of the tree is a node whose two subtrees are
both empty lists.)

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets as binary trees

We can represent a non-empty tree therefore as a list of three
elements

(entry left-branch right-branch)

where entry represents the root of the tree and either or both
of the branches may be the empty list.

Of course this representation as a list is not the same
structure as the tree we are thinking of, but this is just
another example of the phenomenon we referred to before:

the Scheme representation of a data structure does not have
to “look” internally like the data structure as long as it can be
made to act that way.

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets as binary trees

To do this, we need a constructor and three selectors:

(define (make-tree entry left right)

(list entry left right))

;;; extracts first list element

(define (entry tree) (car tree))

;;; extracts second list element

(define (left-branch tree) (cadr tree))

;;; extracts third list element

(define (right-branch tree) (caddr tree))

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets as binary trees

In terms of this constructor and these selectors, we can now write

(define (element-of? x set)

(cond ((null? set) #f)

((= x (entry set)) #t)

((< x (entry set))

(element-of? x (left-branch set)))

((> x (entry set)) ;;; could be "else"

(element-of? x (right-branch set))) ))

element-of? is O(log n) (if the tree is balanced).

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing sets as binary trees

(define (adjoin x set)

(cond ((null? set) (make-tree x ’() ’()))

((= x (entry set)) set)

((< x (entry set))

(make-tree (entry set)

(adjoin x (left-branch set))

(right-branch set)))

((> x (entry set)) ;;; could be "else"

(make-tree (entry set)

(left-branch set)

(adjoin x (right-branch set)) ))))

adjoin is O(log n), similarly.

Nurit Haspel CS450 - Structure of Higher Level Languages


