CS450 - Structure of Higher Level Languages

Streams

October 21, 2020



Introduction

@ Streams are abstract sequences.

@ They are potentially infinite — we will see that their most
interesting and powerful uses come in handling infinite
sequences.

@ For now let us think of them as finite in length.
@ Finite streams are entirely equivalent to lists.

@ Nevertheless, they have their own initializers and access
routines:

the-empty-stream

; a data object -- a stream with no elements
(stream-null? x)

(stream-car x)

(stream-cdr x)

(cons-stream a x)

Nurit Haspel CS450 - Structure of Higher Level Languages



Implementing standard processes using streams

@ To start out, we can think of streams as lists.

o Later, we will see why this is not a good idea in general, even
for finite lists.

@ Here are two computations we might want to perform:

@ Given a binary tree whose leaves are integers, find the sum of
the squares of the leaves that are odd.
@ Construct a list of all the odd Fibonacci numbers

Nurit Haspel CS450 - Structure of Higher Level Languages



Sum of squares of the leaves that are odd

Given a binary tree whose leaves are integers, find the sum of the
squares of the leaves that are odd.

(define (sum-odd-squares tree)
(if (not (pair? tree))
(if (odd? tree)
(square tree)
0)
(+ (sum-odd-squares (left-branch tree))
(sum-odd-squares (right-branch tree)) )))

Nurit Haspel CS450 - Structure of Higher Level Languages



List of Odd Fibonacci Numbers

fib(k) with k < n

;3 ; Assume we have already defined the

;33 procedure (fib k) which evaluates

;5> to the k’th Fibonacci number --

;53 we have seen previously how to do this.

(define (odd-fibs n)
(define (next k)
(if (> k n)
> ()
(let ((£f (fib k)))
(if (odd? £)
(cons f (next (+ k 1)))
(next (+ k 1)) D))
(next 1) )

Nurit Haspel CS450 - Structure of Higher Level Languages



List of Odd Fibonacci Numbers

Conceptually, what is going on in these two processes is this:

enumerate filter map accumulate
—> s
tree leaves odd? square +, 0
enumerate map filter accumulate
. e . ——— —_— _—
integers fib odd? cons, ’ ()

Nurit Haspel CS450 - Structure of Higher Level Languages



The Enumerate Procedure

@ We would like to write our procedures so that these processes
become explicit. So first let's do (1).

@ First we need a procedure to take a tree and create a stream
consisting of the leaves of the tree:

(define (stream-enumerate-tree tree)
(if (not (pair? tree))
(cons-stream tree the-empty-stream)
(stream-append
(stream-enumerate-tree (left-branch tree))
(stream-enumerate-tree (right-branch tree)) )))

Nurit Haspel CS450 - Structure of Higher Level Languages



The Append and Filter Procedures

Next, we need some general-purpose higher-order procedures that
act on streams:

(define (stream-append sl s2)
(if (stream-null? si)
s2
(cons-stream (stream-car si1)
(stream-append (stream-cdr s1) s2) )))

(define (stream-filter pred stream)
(cond ((stream-null? stream) the-empty-stream)
((pred (stream-car stream))
(cons-stream (stream-car stream)
(stream-filter pred (stream-cdr stream))))
(else (stream-filter pred (stream-cdr stream)))))

Nurit Haspel CS450 - Structure of Higher Level Languages



The Map and Accumulate Procedures

(define (stream-map proc stream)
(if (stream-null? stream)
the-empty-stream
(cons-stream (proc (stream-car stream))
(stream-map proc (stream-cdr stream)))))

(define (stream-accumulate proc init stream)
(if (stream-null? stream)
init
(proc (stream-car stream)
(stream-accumulate proc init (stream-cdr stream)))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Putting it Together

Now in terms of these definitions, we have simply

(define (sum-odd-squares tree)
(stream-accumulate + 0
(stream-map square
(stream-filter odd?
(stream-enumerate-tree

tree) ))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Putting it Together

@ In our original code, the set of leaves of the tree was implicit
in the code.

@ Here, however, we have made it an explicit object — a
“stream”.

@ Doing that makes it possible to write our code much more
clearly, in terms of procedures that produce or consume such
streams.

@ It's quite useful to note that these higher-order procedures are
pretty general, and so they can be reused.

e For instance, let us now handle (2). We only need one new
procedure.

Nurit Haspel CS450 - Structure of Higher Level Languages



Putting it Together

(define (stream-enumerate-interval low high)
(if (> low high)
the-empty-stream
(cons-stream low
(stream-enumerate-interval (+ low 1) high) )))

And now we can represent (2):

(define (odd-fibs n)
(stream-accumulate cons ’ ()
(stream-filter odd?
(stream-map fib
(stream-enumerate-interval 1 n) ))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Putting it Together

@ Here in our original code the set of numbers from 1 to n was
implicit.

@ In our new code, we have made it an explicit stream and as
before, our procedures either produce or consume such
streams.

@ We can put these stream tools together in different ways. For
instance, suppose we want to construct a list of the squares of
the first n Fibonacci numbers.

Nurit Haspel CS450 - Structure of Higher Level Languages



Putting it Together

(define (list-square-fibs n)
(stream-accumulate cons ’ ()
(stream-map square
(stream-map fib
(stream-enumerate-interval

1n) ))))

Here is another example:

(define (product-of-squares-of-odd-elements stream)
(stream-accumulate * 1
(stream-map square
(stream-filter odd? stream) )))

Nurit Haspel CS450 - Structure of Higher Level Languages



Another Example

@ Suppose we have a stream of records containing information
about employees.

@ We have a selector salary which extracts the employee's
salary from that employee’s record — (salary record)
evaluates to the employee's salary.

@ Suppose we want to find the salary of the highest-paid
employee who is a programmer.

(define (salary-of-highest-paid-programmer record-stream)
(stream-accumulate max 0
(stream-map salary
(stream-filter programmer? record-stream) )))

Nurit Haspel CS450 - Structure of Higher Level Languages



Stream-for-each

This is another higher-order procedure:

(define (stream-for-each proc stream)
(if (stream-null? stream)
’done ; or anything else
(begin (proc (stream-car stream))
(stream-for-each proc (stream-cdr stream)) )))

This is useful, for instance, for viewing a stream:

(define (display-stream stream)
(stream-for-each display-line stream) )

(define (display-line x)

(newline)
(display x) )

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed evaluation

@ Up to now, we have been regarding streams as the same as
lists.

@ However, thinking of streams — even finite streams — as lists
leads to severe inefficiencies.

@ For instance, suppose we want to compute the sum of the
primes from a to b.

@ Here is a straightforward way to do this:

(define (sum-primes a b)
(define (iter count accum)
(cond ((> count b) accum)
((prime? count) (iter (+ count 1) (+ accum count)))
(else (iter (+ count 1) accum)) ))
(iter a 0) )

Nurit Haspel CS450 - Structure of Higher Level Languages



A Stream Way to Write it

It would be nicer to write it like this:

(define (sum-primes a b)
(stream-accumulate + 0
(stream-filter prime?
(stream-enumerate-interval a b) )))

But here we have to first create the whole list of integers from a to
b, then create the whole list of primes from a to b, and then sum
them.

Nurit Haspel CS450 - Structure of Higher Level Languages



A Stream Way to Write it

@ Even worse: suppose we want to find the second prime in the
interval [10,000...100,000].

@ We could write this:

(stream-car (stream-cdr (stream-filter prime?
(stream-enumerate-interval 10000
100000))))

But this would first create a list of 90,000 numbers, checking each
of them for primality, and then throwing away all but the first two.

Nurit Haspel CS450 - Structure of Higher Level Languages



A Stream On Demand

@ The solution is to only create elements of a stream on
demand.

@ Specifically, we make cons-stream a special form which does
not evaluate its second argument.

@ stream-cdr performs the actual evaluation.

@ In order to implement this, we use a new special form delay
and and a new primitive procedure force.

@ Both of these are built into Scheme.

(cons-stream a b) is equivalent to (cons a (delay b))
(define (stream-car stream) (car stream))
(define (stream-cdr stream) (force (cdr stream)))

Nurit Haspel CS450 - Structure of Higher Level Languages



A Stream On Demand

Let us see how to evaluate

(stream-car (stream-cdr (stream-filter prime?

(stream-enumerate-interval 10000
100000))))

where

(define (stream-enumerate-interval low high)
(if (> low high)
the-empty-stream
(cons-stream low
(stream-enumerate-interval (+ low 1) high) )))

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Evaluation

We do this in four steps:

Step 1. Produce
(stream-enumerate-interval 10000 100000)

Step 2. Pass this to (stream-filter prime? ...)
Step 3. Pass this to (stream-cdr ...)

Step 4. Pass this to (stream-car ...)

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Evaluation

Step 1. We first produce
(stream-enumerate-interval 10000 100000):
this is
(cons 10000
(delay
(stream-enumerate-interval 10001 100000)).
Step 2. We next want to evaluate
(stream-filter prime?
(stream—enumerate-interval 10000 100000))
That is, we want to evaluate

(stream-filter prime? (cons 10000
(delay
(stream-enumerate-interval 10001 100000)).

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Evaluation

Remember:

(define (stream-filter pred stream)
(cond ((stream-null? stream) the-empty-stream)
((pred (stream-car stream))
(cons-stream (stream-car stream)

(stream-filter pred (stream-cdr stream))))
(else (stream-filter pred (stream-cdr stream))) ))

we have, since (prime? 10000) is #f,

(stream-filter prime? (stream-cdr stream))

where stream is

(cons 10000
(delay (stream-enumerate-interval 10001 100000)))

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Evaluation

Now stream-cdr forces the delay, like this:

(stream-filter prime? (force (delay
(stream-enumerate-interval 10001 100000))))

so we get

(stream-filter prime?
(stream-enumerate-interval 10001 1000000))

which is

(stream-filter prime?
(cons 10001
(delay (stream-enumerate-interval 10002 100000))))

etc.

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Evaluation

This continues until we get to

(stream-filter prime?
(cons 10007
(delay (stream-enumerate-interval 10008 100000))))

Since 10007 is prime, this becomes

(cons 10007
(delay (stream-filter prime?
(stream-cdr (cons 10007
(delay
(stream-enumerate-interval 10008 10000(

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Evaluation

Step 3. This result is now passed to stream-cdr in our
original expression. This forces the first delay, and
evaluates to
(stream-filter prime?

(stream-cdr (cons 10007
(delay
(stream-enumerate-interval
10008 100000)))))))

Both arguments to stream-filter have to be
evaluated. Evaluating the second argument causes
stream-filter to force the delay in the cdr of its
argument vyielding...

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Evaluation

(stream-filter prime?
(cons 10008
(delay
(stream-enumerate-interval 10009 100000))))

We keep going until it finds the next prime, which is 10009, where
we get

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Evaluation

(cons 10009
(delay (stream-filter prime?
(stream-cdr
(cons 10009
(delay (stream-enumerate-interval
10010 100000)))))))

Step 4. This is now passed to the stream-car in our original
expression. This is just car, and so we get 10009.

Nurit Haspel CS450 - Structure of Higher Level Languages



Implementing delay and force

@ Here is one way that one could implement delay and force:
@ delay is a special form, such that
(delay <exp>) is equivalent to (lambda () <exp>)

(remember the environment model! A procedure is created
but not evaluated)

@ force is not a special form: it is a procedure which just
evaluates its argument by calling it as a procedure:

(define (force delayed-object)
(delayed-object))

Nurit Haspel CS450 - Structure of Higher Level Languages



Implementing delay and force

@ In reality it's a little more complicated.

@ Delayed objects are also tagged so that they print out as a
PROMISE:

==> (define a (delay b))

)

==> a

(PROMISE
b)

But that's a minor point.

Nurit Haspel CS450 - Structure of Higher Level Languages



@ Note that we could define the variable force, because it is
the name of a procedure, and procedures can be defined.

@ However, we could not use define to specify what we mean
by delay, because delay is a special form.

@ Suppose we tried to do it, like this:
(define (pseudo-delay exp) ;53 WRONG!!!
(lambda () exp)) ;33 WRONG!!!
@ Let us think — what would go wrong if you did this?

@ Therefore delay has to be created in Scheme by some other
technique.

@ It can be specified as a macro — this is pretty typical, in fact.

@ But we're not covering macros in this class, so just don't
worry about it, it will be provided for you.

Nurit Haspel CS450 - Structure of Higher Level Languages



