
CS450 - Structure of Higher Level Languages

Continuation Passing

November 9, 2020



Continuation Style Programming

A function written in continuation-passing style takes an
extra argument: an explicit ”continuation”, i.e. a function of
one argument that receives the result of the expression.

When the Continuation Style function has computed its result
value, it ”returns” it by calling the continuation function with
this value as the argument.

The calling function is therefore required to supply a
procedure to be invoked with the ”return” value.

The key is to remember that
1 every function takes an extra argument, its continuation
2 every argument in a function call must be either a variable or a

lambda expression (not a more complex expression).

This basically turns expressions ”inside-out” because the
innermost parts of the expression must be evaluated first, so
we explicate the order of evaluation as well as the control flow.

Nurit Haspel CS450 - Structure of Higher Level Languages



A Simple Example

Given the following function:

(+ 4 (+ 1 2))

the result of (+ 1 2) will be added to 4. The addition to 4 is
that expression’s continuation.

We can also represent this concept of continuation as:

(lambda (v) (+ 4 v))

We can make continuations explicit by using the built-in
procedure call-with-current-continuation or call/cc
(call/cc expr) does the following:

1 Captures the current continuation.
2 Constructs a function C that takes one argument, and applies

the current continuation with that argument value.
3 Passes this function as an argument to expr – i.e., it invokes

(expr C).
4 Returns the result of evaluating (expr C), unless expr calls

C, in which case the value that is passed to C is returned.

https://courses.cs.washington.edu/courses/cse341/04wi/lectures/15-scheme-continuations.html

Nurit Haspel CS450 - Structure of Higher Level Languages

https://courses.cs.washington.edu/courses/cse341/04wi/lectures/15-scheme-continuations.html


The call/cc Procedure

(+ 4 (call/cc

(lambda (cont) (cont (+ 1 2)))))

The continuation is what receives the result of the expression
(i.e. (+ 4 ...)

The result of evaluating (+ 1 2) is passed directly to the
continuation.

This is pretty much like writing:

((lambda (cont) (cont (+ 1 2)))

(lambda (v) (+ 4 v))

https://courses.cs.washington.edu/courses/cse341/04wi/lectures/15-scheme-continuations.html

Nurit Haspel CS450 - Structure of Higher Level Languages

https://courses.cs.washington.edu/courses/cse341/04wi/lectures/15-scheme-continuations.html


The begin.scm Example

(begin

(display 3)

(call/cc

(lambda (xyz)

(display 4)

(xyz 11) ; Argument is ignored.

(display 5)

)) ; End call/cc

(display 6)

)

The continuation is:

(lambda (val)

(display 6)

(exit)) ; This explains why 5 is never displayed!

Nurit Haspel CS450 - Structure of Higher Level Languages



The begin.scm Example

The ”exit” is a non-standard exit procedure that escapes from
the current evaluation.

This can’t be written in Scheme.

So a continuation, even though it acts as a procedure in the
sense that it takes one argument which it evaluates, is
different from a procedure in that a call to it does not return.

So, what happens is this (after (display 3)):

((lambda (xyz)
(display 4)
(xyz 11) ; Argument is ignored.
(display 5))
(lambda (val) (display 6))) ; with the implicit exit

Nurit Haspel CS450 - Structure of Higher Level Languages



The begin.scm Example

What about now?

(begin

(display 3)

(call/cc

(lambda (xyz)

(display 4)

(xyz 11)

(display 5)

))

)

The continuation xyz is bound to the print part of the
read-eval-print loop of the Scheme interpreter:

(lambda(val) (print val))

Therefore, the 11 is printed by the interpreter and nothing
further is printed.

Nurit Haspel CS450 - Structure of Higher Level Languages



The begin.scm Example

What gets printed is therefore equivalent to:

(begin

(display 3)

((lambda (xyz)

(display 4)

(xyz 11)

(display 5)

) (lambda (val) (print val) (exit)))) ; Implicit exit.

Or something like:

(begin

(display 3)

((lambda (lambda (val) (print val) exit)

(display 4)

((lambda (val) (print val) (exit))11)

(display 5)

)))

Nurit Haspel CS450 - Structure of Higher Level Languages



The begin.scm Example

What about now?

(begin

(display 3)

(display (call/cc ;; Note the display

(lambda (xyz)

(display 4)

(xyz 11)

(display 5)

)))

(display 6))

Here what is passed is

(lambda (val)

(display val)

(display 6)

(exit))

Nurit Haspel CS450 - Structure of Higher Level Languages



The save continuation Example

This is a simple example to show how
call-with-current-continuation can be used to
implement exception handling.

The example is so trivial that it could be done more simply;
the point is just to show how call/cc can be used.

We will define a procedure (main loop) which when invoked
asks the user to input a number different from 0.

If the user inputs the number 0 or anything other than a
number, a message is generated explaining what the user did
wrong, and the loop starts over.

If the input is acceptable, the procedure echoes it and quits.

This can be used as a basis for HW7, part 2. I highly
recommend it.

Nurit Haspel CS450 - Structure of Higher Level Languages



The save continuation Example

; Initial definition, to be overwritten

(define target ’())

;;; Define a procedure which needs to escape.

;;; Use the target to tell

;;; it where to escape to.

(define (f x)

(cond ((= x 0)

(display "0 entered; try again.")

(newline)

(target x)) ;;; the argument x will be ignored.

(else

(display "Success: ")

(display x)

(newline))

) )

Nurit Haspel CS450 - Structure of Higher Level Languages



The save continuation Example

(define (main_loop)

(call/cc

(lambda(here)

(set! target here))) ; End of call/cc

(display "Type a number different from 0: ")

(let ((n (read)))

;; First check to make sure that a number was entered.

(if (not (number? n))

(begin

(display n)

(display " is not a number; try again.")

(newline)

(target n) ;;; the argument n will be ignored.

)

)

;; OK; a number was entered.

;;; Now call f to do the rest

(f n)

) )
Nurit Haspel CS450 - Structure of Higher Level Languages



The save continuation Example

What is the continuation here? It should be something like this:

(lambda (val)

(display "Type a number different from 0: ")

(let ((n (read)))

;; First check to make sure that a number was entered.

(if (not (number? n))

(begin

(display n)

(display " is not a number; try again.")

(newline)

(target n) ;;; the argument n will be ignored.

) )

;; OK; a number was entered.

;; Now call f to do the rest of the processing.

(f n) )

(exit) ;; well, escape to the top level!

)

Nurit Haspel CS450 - Structure of Higher Level Languages



Modifying the Meta-Circular Evaluator

In Scheme, and in s450, all arguments are passed by value.
Other languages use other semantics:

Dynamic rather than static scoping. A variable’s value is
looked up in the runtime environment.
Call by-reference: C++ and Java have this option.

Additionally, we want to implement delayed (lazy) evaluation
that allows us to support infinite streams.

HW7, part 1, requires you to implement all that.

A word of warning: You will get both parts at the same time,
and you have two weeks for both. However, part 1 is A lot
more time consuming than part 2.

As a matter of fact, once you understand the concept of
continuation passing, part 2 can be implemented in a very
short time.

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Arguments

A delayed argument is packed into an object named ”thunk”.

It needs to include the expression, the environment and an
indication that this is a thunk.

For example, a list of ”I’m a thunk”, exp, env.

Remember that currently, all arguments are evaluated before
application.

The code needs to be changed so delayed arguments are
”intercepted” before they are evaluated.

There are several ways to do it. Do whatever works.

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Arguments Example

Given the following piece of code:

(define x 10)

(define (F x (delayed y))

(+ x y))

(define (G (delayed z))

(* x z))

(F (+ x 3) (G (- x 2)))

Let us see what happens during evaluation.

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Arguments Example

G :
F :
x : 10

params: (delayed z)
body: (* x z)

params: x (delayed y)
body: (+ x y)

x : 13
y : ("thunk" (G(- x 2)) GE)

Step 1: Evaluate (F (+ x 3) (G (- x 2)))

z : ("thunk" (-x 2) GE)

Step 2: Evaluate (G (- x 2)) in GE

Next steps:

3. Force first thunk, G evaluates to (*10 ("thunk" (- x 2)

GE))

4. Force this thunk, evaluate (- x 2) in GE (global
environment).

5. Evaluate to 80, return to evaluating F.

6. Evaluate (+ 13 80) to get 93.

Nurit Haspel CS450 - Structure of Higher Level Languages



Delayed Arguments Example

Now you have the tools to implement streams.

Implement cons-stream as a special form.

Implement other stream operations accordingly.

You can use the thunk mechanism for it.

There is no need to use ”delayed” variables explicitly since it’s
a special form.

I recommend using infinite streams for testing.

Nurit Haspel CS450 - Structure of Higher Level Languages



Dynamic Arguments

The evaluation here is done as any other applicative order
variable (that is, before application).

The argument is evaluated in the dynamic environment of the
program at run-time, rather than in the (static, lexical)
environment associated with the procedure object.

At any one time there is only one active dynamic environment.

I suggest that you keep a global variable, perhaps
the-dynamic-environment. This environment is a list of
frames, just like the static environment.

You need to manage this variable like a stack.

Each time a function is invoked, you push a frame onto
the-dynamic-environment (using cons).

Make sure you understand how xtend-environment works.

Nurit Haspel CS450 - Structure of Higher Level Languages



Dynamic Arguments

The frame that you push onto the-dynamic-environment is
really the same frame that is added to the static environment.

The difference is that you are not adding to the procedure’s
environment (i.e., the environment that the procedure object
was originally defined in), but instead you are adding to the
dynamic environment. (That’s why it’s a stack.)

Each time a function terminates, you have to restore
the-dynamic-environment to its previous state.

Thus, after the function call is complete, you pop that frame
off of the-dynamic-environment.

Nurit Haspel CS450 - Structure of Higher Level Languages



Dynamic Arguments

The simplest way to add the frame is to do it when you are
adding a frame to the static environment, i.e., in
xtend-environment.

But be careful: the return value of xtend-environment has
to be the static environment, not the dynamic environment.

Where does the dynamic environment get restored to its
previous value after the procedure call?

One obvious place is in xapply. But again you have to be
careful: the return value of xapply is the return value of the
procedure.

Make sure you don’t throw that value away when you restore
the dynamic environment.

You may have another idea of where to restore the dynamic
environment. Whatever you do, document it carefully.

Nurit Haspel CS450 - Structure of Higher Level Languages



Dynamic Argument Example

(define f (lambda(x)(lambda(y)(cons (g x) y))))

(define g (lambda((dynamic z))(cons z 4)))

(define h (f 2))

(define x 1)

then

s450==> (h 5)

((1 . 4) . 5)

Let’s wrap our heads around it...

Nurit Haspel CS450 - Structure of Higher Level Languages



Dynamic Argument Example

Global Environment before call to (h 5)

f :
g :
h :
x : 1

GE

params: x
body: (lambda (y)

(cons (g x) y))

params: (dynamic z)
body: (cons z 4)

x : 2

params: y
body: (cons (g x) y)

Nurit Haspel CS450 - Structure of Higher Level Languages



Dynamic Argument Example

Global Environment after call to (h 5)

f :
g :
h :
x : 1

GE

params: x
body: (lambda (y)

(cons (g x) y))

params: (dynamic z)
body: (cons z 4)

x : 2

y : 5

params: y
body: (cons (g x) y)

Nurit Haspel CS450 - Structure of Higher Level Languages



Dynamic Argument Example

Dynamic Environment after call to (h 5)

f :
g :
h :
x : 1

DE

params: x
body: (lambda (y)

(cons (g x) y))

params: (dynamic z)
body: (cons z 4)

x : 2

y : 5

params: y
body: (cons (g x) y)

Nurit Haspel CS450 - Structure of Higher Level Languages



Dynamic Argument Example

z (g’s formal parameter) is being evaluated in the dynamic
environment.

g’s body is (cons z 4), so (g x) takes its value from the
environment g points to, which is the same as the global
environment.

Remember that after h is executed, the dynamic environment
is restored to its previous state, in this case becomes the same
as GE.

Hence, z is bound to x which evaluates to 1.

The body of g evaluates to (1 . 4) and returns to h.

h them applies the second cons to get ((1 . 4 ) . 5).

Question: What would we get if g’s argument weren’t
dynamic?

Nurit Haspel CS450 - Structure of Higher Level Languages



Reference Arguments

The reference formal argument w represents a reference to the
actual argument.

There is an important difference between reference arguments
and the other kinds of arguments:

When a lambda expression is applied, the actual arguments
for the other kind of arguments can be arbitrary expressions,
but (in our implementation) an actual reference argument
must be a symbol with a value in the environment in which
the lambda expression is evaluated.

You can use ideas from HW6, when implementing the
defined? special form.

Nurit Haspel CS450 - Structure of Higher Level Languages



Reference Arguments

Actually, much of the implementation of reference arguments
follows that of delayed arguments.

When a lambda expression is invoked, you need to create a
thunk-like object (give it a different name, though, like
”reference”) that holds the actual argument (which must be a
symbol) and the environment in which it is found.

During evaluation, if you encounter a formal argument that is
bound to such a ”reference”, then you xeval the actual
argument in the saved environment.

This is the same thing as what you do when you force a thunk.

Nurit Haspel CS450 - Structure of Higher Level Languages



Difference Between Reference and Delayed Arguments

When you make a change to a delayed argument, you change
what that argument is bound to.

Setting the argument equal to 4, for instance, means that it is
no longer bound to a thunk.

When you make a change to a reference argument, you do not
change what the argument is bound to, but you change the
value of the symbol it is bound to.

That is, you are actually reaching into the environment carried
along with the reference argument and changing the value
bound to the referenced symbol.

The difference between reference and delayed arguments
appears in their different behavior under set!. For example,

((lambda ((reference x)(delayed y))

(set! x 3)(set! y 4)) a b)

changes the value of a, but not the value of b.

Nurit Haspel CS450 - Structure of Higher Level Languages



Reference Argument Example

(define u 3)

(define x 10)

(define t 2)

(define g (lambda ((reference x))(f x x) t))

(define f (lambda ((reference x)(reference y))

(set! x 5) y))

then

s450==> (f u u)

5

S450==> (f x x)

5

S450==>(g t)

5

Nurit Haspel CS450 - Structure of Higher Level Languages



Another Reference Argument Example

s450==> (define f (lambda (x (reference y))

(display (cons x y))(newline)

(set! x 10)

(set! y 20)

(cons x y)))

f

s450==> (define a 1)

a

s450==> (define b 2)

b

Nurit Haspel CS450 - Structure of Higher Level Languages



Another Reference Argument Example (cont.)

s450==> (f a b)

(1 . 2) ; from the display statement in f

(10 . 20) ; pair returned by f,

; displayed at end of r-e-p loop

s450==>a

1 ; actual argument a (passed by value) is unchanged

s450==>b

20 ; actual argument b (passed by ref.) has new value

s450==> (f a 2)

error: lambda expression -

actual argument for reference formal argument y must

be a defined symbol

reset and all that stuff ...

==>
Nurit Haspel CS450 - Structure of Higher Level Languages


