
CS450 - Structure of Higher Level Languages

Data Directed Programming

October 7, 2020



Complex Numbers

We will develop a system that performs complex number
operations.

We will use two representations: Rectangular (real +
imaginary part), and polar (magnitude and angle).

Complex numbers are pairs, just like the rational number
example we saw earlier.

A complex number z = x + iy where i =
√
−1 can be thought

of as a point in an x , y plane.

The polar form is z = re iA where r is the magnitude and A is
the angle with the x axis.

Nurit Haspel CS450 - Structure of Higher Level Languages



Converting Between Representations

Real

Im
ag
in
a
ry

r

z = x+ iy = reiA

A
x

y

Nurit Haspel CS450 - Structure of Higher Level Languages



Converting Between Representations

Given x , y , r ,A

x = r cosA

y = r sinA

r =
√

(x2 + y2)

A = atan(y , x)

By convention, A is the angle with the x axis, so A = 0◦ when
aligned with the x axis.

Nurit Haspel CS450 - Structure of Higher Level Languages



Complex Numbers as Real-Imaginary

(define (real-part z) (car z))

(define (imag-part z) (cdr z))

(define (magnitude z)

(sqrt (+ (square (real-part z)) (square (imag-part z)))))

(define (angle z)

(atan (imag-part z) (real-part z)))

(define (make-from-real-imag x y) (cons x y))

(define (make-from-mag-ang r a)

(cons (* r (cos a)) (* r (sin a))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Complex Numbers as Magnitude-Angle

(define (real-part z)

(* (magnitude z) (cos (angle z))))

(define (imag-part z)

(* (magnitude z) (sin (angle z))))

(define (magnitude z) (car z))

(define (angle z) (cdr z))

(define (make-from-real-imag x y)

(cons (sqrt (+ (square x) (square y)))

(atan y x)))

(define (make-from-mag-ang r a) (cons r a))

Nurit Haspel CS450 - Structure of Higher Level Languages



Operations on Complex Numbers

Addition:

Real(z1 + z2) = Real(z1) + Real(z2)
Imaginary(z1 + z2) = Imaginary(z1) + Imaginary(z2)

Multiplication (more convenient to use polar):

Magnitude(z1 · z2) = Magnitude(z1) ·Magnitude(z2)
Angle(z1 · z2) = Angle(z1) + Angle(z2)

Nurit Haspel CS450 - Structure of Higher Level Languages



Operations on Complex Numbers

We want both representation to be available to us.

We want all operations to be available regardless of which
representation we are using.

Assume we have four selectors: real-part, imag-part,
magnitude and angle

Assume we have two constructors: make-from-real-imag

and make-from-mag-angle.

Given a complex number z , both constructors should return
complex numbers that are equal to z .

See sec2.4.1.scm.pdf for operations on complex numbers.

Nurit Haspel CS450 - Structure of Higher Level Languages

http://www.cs.umb.edu/CS450/slides/sec2.4.1.scm.pdf


Tagged Data

Data abstraction allows us to use either of the two
representations above.

As a matter of fact, we can even use both!

It is great, since rectangular representation goes more
naturally with some operations, and polar goes more naturally
with others.

However, we need to distinguish the data in polar form from
the data in rectangular form.

Otherwise, given two numbers, we wouldn’t know if they are
the real and imaginary or the magnitude and angle.

To accomplish that, we can attach a type tag to our data.

Nurit Haspel CS450 - Structure of Higher Level Languages



Tagged Data

Assume that we have procedures type-tag and contents

that extract from a data object the tag and the actual
contents (the polar or rectangular coordinates, in the case of a
complex number).

Additionally, a procedure attach-tag takes a tag and
contents and produces a tagged data object.

Nurit Haspel CS450 - Structure of Higher Level Languages



Tagged Data

(define (attach-tag type-tag contents)

(cons type-tag contents))

(define (type-tag datum)

(if (pair? datum)

(car datum)

(error "Bad tagged datum -- TYPE-TAG" datum)))

(define (contents datum)

(if (pair? datum)

(cdr datum)

(error "Bad tagged datum -- CONTENTS" datum)))

sec2.4.2.scm.pdf

Nurit Haspel CS450 - Structure of Higher Level Languages

http://www.cs.umb.edu/CS450/slides/sec2.4.2.scm.pdf


Using Tagged Data

Now we can use both representations in the same package.

We define predicates rectangular? and polar? to identify
which one we’re using.

(define (rectangular? z)

(eq? (type-tag z) ’rectangular))

(define (polar? z)

(eq? (type-tag z) ’polar))

Nurit Haspel CS450 - Structure of Higher Level Languages



Using Tagged Data, Rectangular

When building new procedures, we should remember to name our
functions uniquely and to attach tags.

(define (real-part-rectangular z) (car z))

(define (imag-part-rectangular z) (cdr z))

(define (magnitude-rectangular z)

(sqrt (+ (square (real-part-rectangular z))

(square (imag-part-rectangular z)))))

(define (angle-rectangular z)

(atan (imag-part-rectangular z)

(real-part-rectangular z)))

(define (make-from-real-imag-rectangular x y)

(attach-tag ’rectangular (cons x y)))

(define (make-from-mag-ang-rectangular r a)

(attach-tag ’rectangular

(cons (* r (cos a)) (* r (sin a)))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Using Tagged Data, Polar

When building new procedures, we should remember to name our
functions uniquely and to attach tags.

(define (real-part-polar z)

(* (magnitude-polar z) (cos (angle-polar z))))

(define (imag-part-polar z)

(* (magnitude-polar z) (sin (angle-polar z))))

(define (magnitude-polar z) (car z))

(define (angle-polar z) (cdr z))

(define (make-from-real-imag-polar x y)

(attach-tag ’polar

(cons (sqrt (+ (square x) (square y)))

(atan y x))))

(define (make-from-mag-ang-polar r a)

(attach-tag ’polar (cons r a)))

Nurit Haspel CS450 - Structure of Higher Level Languages



Usage Example

Check the tag to know which implementation to use.

(define (real-part z)

(cond ((rectangular? z)

(real-part-rectangular (contents z)))

((polar? z)

(real-part-polar (contents z)))

(else (error "Unknown type -- REAL-PART" z))))

(define (imag-part z)

(cond ((rectangular? z)

(imag-part-rectangular (contents z)))

((polar? z)

(imag-part-polar (contents z)))

(else (error "Unknown type -- IMAG-PART" z))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Usage Example

Check the tag to know which implementation to use.

(define (magnitude z)

(cond ((rectangular? z)

(magnitude-rectangular (contents z)))

((polar? z)

(magnitude-polar (contents z)))

(else (error "Unknown type -- MAGNITUDE" z))))

(define (angle z)

(cond ((rectangular? z)

(angle-rectangular (contents z)))

((polar? z)

(angle-polar (contents z)))

(else (error "Unknown type -- ANGLE" z))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Usage Example

For arithmetic operations, use the same procedures as before.

The reason is that the selectors are generic, and they decide
which representation they work with.

There are several layers of abstraction here.

The tags are needed for the higher level procedures, to
recognize what representation they are using.

add-complex sub-complex mul-complex div-complex

Programs that use complex numbers

real-part imag-part

magnitude angle

Complex arithmetic package

Rectangular Representation Polar Representation

List structure and primitive machine arithmetics

Nurit Haspel CS450 - Structure of Higher Level Languages



Data Directed Programming

The system above has some weaknesses.

For one, every representation needs to know about the others.

Imagine we add a third representation...

Also, we have to make sure no two procedures have the same
name.

This method is not additive: The person implementing the
generic selector procedures must modify those procedures
each time a new representation is installed.

The people interfacing the individual representations must
modify their code to avoid name conflicts.

Nurit Haspel CS450 - Structure of Higher Level Languages



Data Directed Programming

Notice that whenever we deal with a set of generic operations
that are common to a set of different types we are dealing with
a two-dimensional table that contains the possible operations
on one axis and the possible types on the other axis.

The entries in the table are the procedures that implement
each operation for each type of argument presented.

Operation Polar Rectangular

real-part real-part-polar real-part-rectangular
imag-part imag-part-polar imag-part-rectangular
magnitude magnitude-polar magnitude-rectangular

angle angle-polar angle-rectangular

Nurit Haspel CS450 - Structure of Higher Level Languages



Data Directed Programming

Data-directed programming works with such a table directly.

Here we will implement the interface as a single procedure
that looks up the combination of the operation name and
argument type in the table, and then applies it to the contents
of the argument.

This way, adding a new representation package to the system
only requires adding new entries to the table.

(put op type item): install an item in the table, indexed
by op, type

(get op type): Retrive an item from the table, indexed by
op, type.

For now assume these functions exist in our language.

Nurit Haspel CS450 - Structure of Higher Level Languages



How Does it Work?

We develop our code as usual.

Define a collection of procedures, or a package and interfaces
to the rest of the system by adding entries to the table:

(define (install-rectangular-package)

;; internal procedures

(define (real-part z) (car z))

(define (imag-part z) (cdr z))

(define (make-from-real-imag x y) (cons x y))

(define (magnitude z)

(sqrt (+ (square (real-part z))

(square (imag-part z)))))

(define (angle z)

(atan (imag-part z) (real-part z)))

(define (make-from-mag-ang r a)

(cons (* r (cos a)) (* r (sin a))))

Nurit Haspel CS450 - Structure of Higher Level Languages



How Does it Work?

% ;; interface to the rest of the system

(define (tag x) (attach-tag ’rectangular x))

(put ’real-part ’(rectangular) real-part)

(put ’imag-part ’(rectangular) imag-part)

(put ’magnitude ’(rectangular) magnitude)

(put ’angle ’(rectangular) angle)

(put ’make-from-real-imag ’rectangular

(lambda (x y) (tag (make-from-real-imag x y))))

(put ’make-from-mag-ang ’rectangular

(lambda (r a) (tag (make-from-mag-ang r a))))

’done)

Nurit Haspel CS450 - Structure of Higher Level Languages



How Does it Work?

The internal procedures here are the same as before.

No changes are necessary in order to interface them to the
rest of the system.

Moreover, since these procedure definitions are internal to the
installation procedure, there is no need to worry about name
conflicts.

For polar package see the text. It’s very similar.

Nurit Haspel CS450 - Structure of Higher Level Languages



Apply Generic

The complex-arithmetic selectors access the table by means of
a general operation” procedure called apply-generic, which
applies a generic operation to some arguments.

It searches the table under the name of the operation and the
types of the arguments and applies the resulting procedure if
one is present:

(define (apply-generic op . args)

(let ((type-tags (map type-tag args)))

(let ((proc (get op type-tags)))

(if proc

(apply proc (map contents args))

(error

"No method for these types -- APPLY-GENERIC"

(list op type-tags))))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Apply Generic Example

We can define our generic selectors as follows:

(define (real-part z) (apply-generic ’real-part z))

(define (imag-part z) (apply-generic ’imag-part z))

(define (magnitude z) (apply-generic ’magnitude z))

(define (angle z) (apply-generic ’angle z))

This way we can add new definitions without changing the old
ones.

Nurit Haspel CS450 - Structure of Higher Level Languages



Apply Generic Example

We can also extract from the table the constructors to be
used by the programs in making complex numbers from real
and imaginary parts and from magnitudes and angles.

We construct rectangular numbers whenever we have real and
imaginary parts, and polar numbers whenever we have
magnitudes and angles:

(define (make-from-real-imag x y)

((get ’make-from-real-imag ’rectangular) x y))

(define (make-from-mag-ang r a)

((get ’make-from-mag-ang ’polar) r a))

Nurit Haspel CS450 - Structure of Higher Level Languages



Message Passing

This style of programming organizes the required dispatching
on type by having each operation take care of its own
dispatching.

This decomposes the operation-and-type table into rows, with
each generic operation procedure representing a row of the
table.

An alternative strategy is to decompose the table into
columns and, instead of using “intelligent operations” that
dispatch on data types, to work with “intelligent data
objects” that dispatch on operation names.

We can do this by arranging things so that a data object, such
as a rectangular number, is represented as a procedure that
takes as input the required operation name and performs the
operation indicated.

Nurit Haspel CS450 - Structure of Higher Level Languages



Message Passing

(define (make-from-real-imag x y)

(define (dispatch op)

(cond ((eq? op ’real-part) x)

((eq? op ’imag-part) y)

((eq? op ’magnitude)

(sqrt (+ (square x) (square y))))

((eq? op ’angle) (atan y x))

(else

(error "Unknown op -- MAKE-FROM-REAL-IMAG" op))))

dispatch)

The corresponding apply-generic procedure is now as follows:

(define (apply-generic op arg) (arg op))

Nurit Haspel CS450 - Structure of Higher Level Languages



Message Passing

This style of programming is called message passing.

The name comes from the image that a data object is an
entity that receives the requested operation name as a
“message”.

We have seen it before with our possible implementation of
cons.

We will get back to this idea later on in the course.

Nurit Haspel CS450 - Structure of Higher Level Languages


