eceval-support.scm
~/umb/cs450/ch5.BASE/

1
12/25/10

;i File: eceval-support.scm
;s This file contains procedures that are taken from the Chapter 4
;i» interpreter, and are used as machine—primitive operators in the
i register machines of Chapter 5.
o Itis loaded by

load-eceval.scm to construct the explicit—control evaluator eceval.
; machine-shell.scm to construct the register machine that

executes compiled code.

All operations are used by both these machines except as noted.

(load "syntax.scm")
;i Truth values

(define (true? x)
(not (eq? x #f)))

;. not used by eceval itself —— used by compiled code when that
;. isrun in the eceval machine
(define (false? x)
(eq? x #))
;. Procedures
;; following compound-procedure operations not used by compiled code
(define (make—procedure parameters body env)
(list 'procedure parameters body env))

(define (compound-procedure? p)
(tagged-list? p 'procedure))

(define (procedure—parameters p) (cadr p))
(define (procedure—body p) (caddr p))

(define (procedure—environment p) (cadddr p))
;7 (end of compound procedures)

An environment is a list of frames.

(define (' enclosing—environment env) (cdr env))
(define (first-frame env) (car env))
(define the-empty—environment 0)

Each frame is represented as a pair of lists:

1. alist of the variables bound in that frame, and
2. alist of the associated values.

1

1

(define (make-frame variables values)
(cons variables values))

(define (frame-variables frame) (car frame))

(define (frame-values frame) (cdr frame))

(define (add-binding-to-frame! var val frame)
(set—car! frame (cons var (car frame)))
(set—cdr! frame (cons val (cdr frame))))

;s Extending an environment

(define (extend-environment vars vals base-env)
(i (= (length vars) (length vals))
(cons (make—frame vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))

Looking up a variable in an environment

(define (lookup-variable-value var env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing—environment env)))
((eq? var (car vars))
(car vals))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty—environment)
(error "Unbound variable" var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))

Note that it is an error if the variable is not already present
(i.e., previously defined) in that environment.

(define (set-variable-value! var val env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing—environment env)))
((eg? var (car vars))
(set—car! vals val))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty—environment)
(error "Unbound variable —— SET!" var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))

;;» Defining a (possibly new) variable. First see if the variable
i already exists. If it does, just change its value to the new
;v value. Ifit does not, define the new variable in the current
5 frame.

(define (define-variable! var val env)
(let ((frame (first-frame env)))
(define (scan vars vals)

(cond ((null? vars)
(add-binding—to—frame! var val frame))
((eq? var (car vars))
(set—car! vals val))
(else (scan (cdr vars) (cdr vals)))))

Setting a variable to a new value in a specified environment.

eceval-support.scm
~/umb/cs450/ch5.BASE/

2
12/25/10

(scan (frame-variables frame)
(frame-values frame))))

. This is initialization code that is executed once, when the the
s interpreter is invoked.

(define (setup—environment)
(let ((initial-env
(extend—environment (primitive—procedure—names)

(primitive—procedure—objects)
the—empty—environment)))

(define-variable! 'true #t initial-env)

(define-variable! 'false #f initial-env)

initial-env))

Define the primitive procedures

(define (' primitive—procedure? proc)
(tagged-list? proc 'primitive))

(define (' primitive—implementation proc) (cadr proc))

Here is where we rely on the underlying Scheme implementation to
know how to apply a primitive procedure.

(define (apply—primitive-procedure proc args)
(apply (primitive—implementation proc) args))

These are procedures in code that we will compile (or interpret)
i that we want to regard as primitive.

(define primitive—procedures
(list (list 'car car)

(list "cdr cdr)

(list 'cons cons)

(list 'null? null?)
;; above from book —— here are some more
(list '+ +)
(list’=-)
(list ™* *)
(list'==)
(list’/ /)
(list > >)
(list '< <)

(list "list list)

)

(define (' primitive—procedure-names)
(mapcar
primitive-procedures))

(define (primitive—procedure-objects
(map(lambda (proc) (list 'primitive (cadr proc)))
primitive—procedures))

R R R R R R R R RN R R R R E R R R R R R R LR R R R R IR LReRE]
1

Support for the main driver loop

IR R R R R R LR R R R R R R R R R R R R R R R R R R IR R R ERLRERLE]

(define (prompt-for-input string)
(newline) (newline) (display string) (newline))

(define (announce-output string)
(newline) (display string) (newline))

(define (user—print object)
(if (compound-procedure? object)
(display (list 'compound—-procedure
(procedure—parameters object)
(procedure—body object)
‘<procedure—env>))
(display object)))

o Support for new operations needed by eceval machine

;v Simulation of new machine operations needed by
eceval machine (not used by compiled code)

. From section 5.4.1 footnote

(define (empty-arglist) ’()

(define (adjoin—arg arg arglist)
(append arglist (list arg)))

(define (last-operand? ops)
(null? (cdr ops)))

;»» From section 5.4.2 footnote, for non—-tail-recursive sequences
(define (no—more-exps? seq) (null? seq))

;v From section 5.4.4 footnote

(define (' get—global-environment)
the—global-environment)

;. will do following when ready to run, not when load this file

;; (define the—global-environment (setup—environment))

W Support for compiled code

;s Simulation of new machine operations needed for compiled code
and eceval/compiler interface (not used by plain eceval machine)
From section 5.5.2 footnote

(define (make-compiled—procedure entry env)
(list 'compiled—procedure entry env))
(define (compiled—procedure? proc)
(tagged-list? proc 'compiled—procedure))
(define (compiled—procedure-entry c—proc) (cadr c—proc))
(define (compiled-procedure-env c—proc) (caddr c—-proc))

