CS450 - Structure of Higher Level Languages

The Explicit-Control Evaluator

December 7, 2020



The Explicit-Control Evaluator

@ We have shown how simple scheme programs can be
transformed into register machines.

@ We will now perform this transformation on a more complex
program, the metacircular evaluator

@ The explicit-control evaluator shows how the underlying
procedure-calling and argument-passing mechanisms used by
the evaluator can be described in terms of operations on
registers and stacks.

@ the explicit-control evaluator can serve as an implementation
of a Scheme interpreter, written in a language very similar to
the native machine language of conventional computers.

@ The evaluator can be executed by the register-machine
simulator.

@ It can also be the basis for building a hardware
implementation!

Nurit Haspel CS450 - Structure of Higher Level Languages



The Explicit-Control Evaluator

We must specify the operations to be used in our register
machine.

@ We described the metacircular evaluator in terms of abstract
syntax, using procedures such as quoted? and
make-procedure.

@ In implementing the register machine, we could expand these
procedures into sequences of elementary list-structure memory
operations, and implement them on our register machine.

@ However, this would make our evaluator very long, obscuring
the basic structure with details.

@ For clarity, we will include some procedures as primitives.

Nurit Haspel CS450 - Structure of Higher Level Languages



The Explicit-Control Evaluator

@ Our Scheme evaluator register machine includes a stack and
seven registers:
@ exp is used to hold the expression to be evaluated
@ env contains the environment in which the evaluation is to be
performed
© val contains the value obtained by evaluating the expression
in the designated environment at the end of an evaluation
© continue is used to implement recursion. The evaluator needs
to call itself recursively, since evaluating an expression requires
evaluating its subexpressions.
proc, argl, and unev are used in evaluating combinations.

©

Nurit Haspel CS450 - Structure of Higher Level Languages



eval-dispatch

@ eval-dispatch corresponds to the eval procedure of the
metacircular evaluator.

@ When the controller starts at eval-dispatch, it evaluates
the expression specified by exp in the environment specified
by env.

@ When evaluation is complete, the controller will go to the
entry point stored in continue, and the val register will hold
the value of the expression.

@ The structure of eval-dispatch is a case analysis on the
syntactic type of the expression to be evaluated

Nurit Haspel CS450 - Structure of Higher Level Languages



eval-dispatch

eval-dispatch
(test (op self-evaluating?) (reg exp))
(branch (label ev-self-eval))
(test (op variable?) (reg exp))
(branch (label ev-variable))
(test (op quoted?) (reg exp))
(branch (label ev-quoted))
(test (op assignment?) (reg exp))
(branch (label ev-assignment))
(test (op definition?) (reg exp))
(branch (label ev-definition))
(test (op if?) (reg exp))
(branch (label ev-if))
(test (op lambda?) (reg exp))
(branch (label ev-lambda))
(test (op begin?) (reg exp))
(branch (label ev-begin))
(test (op application?) (reg exp))
(branch (label ev-application))
(goto (label unknown-expression-type))

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Simple Expressions

ev-self-eval
(assign val (reg exp))
(goto (reg continue))

ev-variable
(assign val (op lookup-variable-value) (reg exp) (reg env))
(goto (reg continue))

ev-quoted
(assign val (op text-of-quotation) (reg exp))
(goto (reg continue))

ev-lambda
(assign unev (op lambda-parameters) (reg exp))
(assign exp (op lambda-body) (reg exp))
(assign val (op make-procedure)

(reg unev) (reg exp) (reg env))

(goto (reg continue))

ev-lambda uses unev and exp to hold the parameters and body of the
lambda expression so that they can be passed to make-procedure, along
with env.

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Procedure Applications

@ A procedure application is specified by a combination of an
operator and operands.

@ The operator is a subexpression whose value is a procedure,
and the operands are subexpressions whose values are the
arguments.

@ The metacircular eval recursively evaluates each element of
the combination, and then passing the results to apply, which
performs the actual procedure application.

@ The explicit-control evaluator does the same thing; these
recursive calls are implemented by goto instructions, with use
of the stack to save registers that will be restored after the
recursive call returns.

@ Before each call we will be careful to identify which registers
must be saved (because their values will be needed later).

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Procedure Applications

@ We begin the evaluation of an application by evaluating the
operator to produce a procedure, which will later be applied
to the evaluated operands.

@ We move the operator to the exp register and go to
eval-dispatch.

@ The environment in the env register is already the correct one
in which to evaluate the operator.

@ However, we save env because we will need it later to evaluate
the operands.

@ We extract the operands into unev and save this on the stack.

@ We set up continue so that eval-dispatch will resume at
ev-appl-did-operator after the operator has been
evaluated.

@ First, however, we save the old value of continue, which tells
the controller where to continue after the application.

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Procedure Applications

ev-application
(save continue)
(save env)
(assign unev (op operands) (reg exp))
(save unev)
(assign exp (op operator) (reg exp))
(assign continue (label ev-appl-did-operator))
(goto (label eval-dispatch))

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Procedure Applications

At this point the operator is evaluated, we move on to evaluate the
operands.

ev-appl-did-operator
(restore unev) ; the operands
(restore env)
(assign argl (op empty-arglist))
(assign proc (reg val)) ; the operator
(test (op no-operands?) (reg unev))
(branch (label apply-dispatch))
(save proc)

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Procedure Applications

@ Each cycle of the argument-evaluation loop evaluates an
operand from unev and accumulates the result into argl.

@ We place the operand in the exp register and go to
eval-dispatch, after setting continue so that execution will
resume with the argument-accumulation phase.

@ When an operand has been evaluated, the value is
accumulated into the list held in argl.

@ It is then removed from unev, and the argument-evaluation
continues.

@ A special case is made for the evaluation of the last operand,
which is handled at ev-appl-last-arg.

@ In this case we don't need to save unev and the environment.

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Procedure Applications

ev-appl-operand-loop
(save argl)
(assign exp (op first-operand) (reg unev))
(test (op last-operand?) (reg unev))
(branch (label ev-appl-last-arg))
(save env)
(save unev)
(assign continue (label ev-appl-accumulate-arg))
(goto (label eval-dispatch))

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Procedure Applications

ev-appl-accumulate-arg
(restore unev)
(restore env)
(restore argl)
(assign argl (op adjoin-arg) (reg val) (reg argl))
(assign unev (op rest-operands) (reg unev))
(goto (label ev-appl-operand-loop))

ev-appl-last-arg
(assign continue (label ev-appl-accum-last-arg))
(goto (label eval-dispatch))
ev-appl-accum-last-arg
(restore argl)
(assign argl (op adjoin-arg) (reg val) (reg argl))
(restore proc)
(goto (label apply-dispatch))

Nurit Haspel CS450 - Structure of Higher Level Languages



Applying a Procedure

Test whether it is a primitive or a user-defined procedure.

apply-dispatch

(test (op primitive-procedure?) (reg proc))
(branch (label primitive-apply))

(test (op compound-procedure?) (reg proc))
(branch (label compound-apply))

(goto (label unknown-procedure-type))

primitive-apply
(assign val (op apply-primitive-procedure)
(reg proc)
(reg argl))
(restore continue)
(goto (reg continue))

Nurit Haspel CS450 - Structure of Higher Level Languages



Applying a Procedure

Test whether it is a primitive or a user-defined procedure.

apply-dispatch
(test (op primitive-procedure?) (reg proc))
(branch (label primitive-apply))
(test (op compound-procedure?) (reg proc))
(branch (label compound-apply))
(goto (label unknown-procedure-type))

primitive-apply
(assign val (op apply-primitive-procedure)
(reg proc)
(reg argl))
(restore continue)
(goto (reg continue))

Nurit Haspel CS450 - Structure of Higher Level Languages



Applying a Procedure

compound-apply
(assign unev (op procedure-parameters) (reg proc))
(assign env (op procedure-environment) (reg proc))
(assign env (op extend-environment)
(reg unev) (reg argl) (reg env))
(assign unev (op procedure-body) (reg proc))
(goto (label ev-sequence))

Nurit Haspel CS450 - Structure of Higher Level Languages



Sequences and Tail Recursion

@ ev-sequence is analogous to the metacircular evaluator’s
eval-sequence procedure.

@ It handles sequences of expressions in procedure bodies or in
explicit begin expressions.

@ begin expressions are evaluated by placing the sequence of
expressions to be evaluated in unev, saving continue on the
stack, and jumping to ev-sequence.

@ You should understand how sequences work if you choose to
do question 2 in HW9.

ev-begin
(assign unev (op begin-actions) (reg exp))
(save continue)
(goto (label ev-sequence))

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Sequences

ev-sequence

(assign exp (op first-exp) (reg unev))

(test (op last-exp?) (reg unev))

(branch (label ev-sequence-last-exp))

(save unev)

(save env)

(assign continue (label ev-sequence-continue))

(goto (label eval-dispatch))
ev-sequence-continue

(restore env)

(restore unev)

(assign unev (op rest-exps) (reg unev))

(goto (label ev-sequence))
ev-sequence-last-exp

(restore continue)

(goto (label eval-dispatch))

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Sequences

The code forms a loop where each expression is being
evaluated.

If there are more expressions after this one, they are saved to
unev, and the environment is saved to env.

The register continue tells us where to go after evaluation,
and then eval-dispatch is called.

When returning to the sequence, env and unev are restored,
the rest of the expressions are stored in unev and the loop
continues.

The value of the whole sequence is the value of the last
expression, so after evaluating the last expression we only need
to continue at the entry point currently held on the stack.

This makes the evaluator tail recursive, because nothing is left
on the stack from the sequence after evaluating the last
expression.

Nurit Haspel CS450 - Structure of Higher Level Languages



Disabling Tail Recursion

@ We can disable tail recursion by making a small change to the
ev-sequence process.

@ As it is now, all but the last expression are treated the same:
We are saving the registers, evaluating the expression,
returning to restore the registers, and repeating this until all
the expressions have been evaluated.

@ Making the last expression do the same will make us come
back after evaluating the last expression and undo the register
saves, effectively making tail recursion functioning as regular
recursion.

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Sequences

ev-sequence
(test (op no-more-exps?) (reg unev))
(branch (label ev-sequence-end))
(assign exp (op first-exp) (reg unev))
(save unev)
(save env)
(assign continue (label ev-sequence-continue))
(goto (label eval-dispatch))
ev-sequence-continue
(restore env)
(restore unev)
(assign unev (op rest-exps) (reg unev))
(goto (label ev-sequence))
ev-sequence-end
(restore continue)
(goto (reg continue))

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Conditionals

ev-if
(save exp) ; save expression for later
(save env)
(save continue)
(assign continue (label ev-if-decide))
(assign exp (op if-predicate) (reg exp))
(goto (label eval-dispatch)) ; evaluate the predicate

ev-if-decide
(restore continue)
(restore env)
(restore exp)
(test (op true?) (reg val))
(branch (label ev-if-consequent))

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Conditionals

ev-if-alternative
(assign exp (op if-alternative) (reg exp))
(goto (label eval-dispatch))
ev-if-consequent
(assign exp (op if-consequent) (reg exp))
(goto (label eval-dispatch))

Notice that for the cond question in the HW you'll have to go to
ev-sequence (why?)

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Definitions

ev-definition
(assign unev (op definition-variable) (reg exp))
(save unev) ; save variable for later
(assign exp (op definition-value) (reg exp))
(save env)
(save continue)
(assign continue (label ev-definition-1))
(goto (label eval-dispatch))
ev-definition-1
(restore continue)
(restore env)
(restore unev)
(perform
(op define-variable!) (reg unev) (reg val) (reg env))
(assign val (const ok))
(goto (reg continue))

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Assignments

v-assignment
(assign unev (op assignment-variable) (reg exp))
(save unev) ; save variable for later
(assign exp (op assignment-value) (reg exp))
(save env)
(save continue)
(assign continue (label ev-assignment-1))
(goto (label eval-dispatch))
ev-assignment-1
(restore continue)
(restore env)
(restore unev)
(perform
(op set-variable-value!) (reg unev) (reg val) (reg env))
(assign val (const ok))
(goto (reg continue))

Nurit Haspel CS450 - Structure of Higher Level Languages



Monitoring the Evaluator

@ Stack monitoring allows us to follow the behavior of the
evaluator.

@ The monitored stack keeps track of its max depth and number
of pushes.

@ Useful for Q3-5 of HWO9.

print-result
(perform (op print-stack-statistics))
(perform
(op announce-output) (const ";;; EC-Eval value:"))
; same as before

Nurit Haspel CS450 - Structure of Higher Level Languages



Monitoring the Evaluator — Example

;55 EC-Eval input:
(define (factorial n)
(if (=n 1)
1
(* (factorial (- n 1)) n)))
(total-pushes = 3 maximum-depth = 3)
;33 EC-Eval value:
ok
;33 EC-Eval input:
(factorial 5)
(total-pushes = 144 maximum-depth = 28)
;33 EC-Eval value:
120

Nurit Haspel CS450 - Structure of Higher Level Languages



