eceval.scm
~/umb/cs450/ch5.BASE/

1
12/25/10

EXPLICIT-CONTROL EVALUATOR FROM SECTION 5.4 OF
STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS

1iny

1y

i Touseit

;i» —— load "load-eceval.scm", which loads this file and the

support it needs (including the register-machine simulator)

and then defines the global environment and starts the machine.

1

1

;. Torestart, just do
; (start eceval)

IETEIEEEEE]

i **NB. To [not] monitor stack operations, comment in/[out] the line after
;; print=result in the machine controller below
5+ **Also choose the desired make—-stack version in regsim.scm

1

1

The built=in (machine—primitive) operations of the machine

1

Each machine automatically has two built-in operations:
initialize—stack
print-stack-statistics

All other built-in operations have to be declared here.

Implementations for them have to be provided elsewhere, as noted
below.

1

(define eceval-operations
(list
;v primitive Scheme operations
(list 'read read)

;; operations in syntax.scm
(list 'self-evaluating? self-evaluating?)
(list 'quoted? quoted?)
(list 'text-of—quotation text—of—quotation)
(list 'variable? variable?)
(list "assignment? assignment?)
(list "assignment-variable assignment-variable)
(list "assignment-value assignment-value)
(list "definition? definition?)
(list 'definition-variable definition—variable)
(list 'definition—-value definition—value)
(list 'lambda? lambda?)
(list 'lambda-parameters lambda—parameters)
(list lambda—-body lambda-body)
(list "if? if?)
(list "if-predicate if-predicate)
(list "if-consequent if-consequent)
(list "if-alternative if-alternative)
(list 'begin? begin?)
(list 'begin—actions begin-actions)
(list "last-exp? last-exp?)
(list "first—exp first—exp)
(list 'rest—exps rest—exps)
(list "application? application?)
(list "operator operator)
(list 'operands operands)
(list 'no—operands? no—-operands?)
(list "first-operand first—operand)

(list 'rest—operands rest—-operands)

;; operations in eceval-support.scm
(list 'true? true?)
(list 'make-procedure make—procedure)
(list 'compound-procedure? compound—procedure?)
(list 'procedure—parameters procedure—parameters)
(list "procedure-body procedure-body)
(list ‘procedure—environment procedure—environment)
(list "extend—environment extend—environment)
(list "lookup—variable-value lookup-variable-value)
(list 'set-variable-value! set-variable-value!)
(list 'define—variable! define-variable!)
(list "primitive—procedure? primitive-procedure?)
(list "apply—primitive—procedure apply—primitive—procedure)
(list "prompt—for—input prompt-for—input)
(list "announce-output announce-output)
(list "'user—print user—print)
(list 'empty-arglist empty—arglist)
(list "adjoin—arg adjoin—arg)
(list last-operand? last-operand?)
(list 'no—-more-exps? no—-more—-exps?) ; for non—tail-recursive machine
(list "get—global-environment get—global-environment))

(define eceval
(make-machine
"(exp env val proc argl continue unev)
eceval-operations

;i Note that the read-eval-print-loop comes first. This ensures that
;s the program starts by entering this loop.
read—eval-print-loop

(perform (op initialize-stack))

(perform

(op prompt—for-input) (const ";;; EC—Eval input:"))

(assign exp (op read))

(assign env (op get—global-environment))

(assign continue (label print-result))

(goto (label eval-dispatch))
print-result
; **following instruction optional —- if use it, need monitored stack
(perform (op print-stack-statistics))
(perform

(op announce-output) (const ";;; EC-Eval value:"))
(perform (op user—print) (reg val))
(goto (label read-eval—-print-loop))

unknown-expression-type
(assign val (const unknown—-expression—type—error))
(goto (label signal-error))

unknown-procedure-type
(restore continue)
(assign val (const unknown-procedure—type—-error))
(goto (label signal-error))

signal—error

eceval.scm
~/umb/cs450/ch5.BASE/

(perform (op user—print) (reg val))
(goto (label read-eval—-print-loop))

eval-dispatch
v Onentry,
exp contains the expression to be evaluated.

env contains the environment in which to evaluate the expression.

5 continue contains the label at which to continue execution.
;. On exit,
val holds the result of evaluating the expression.
Execution continues at the label specified in continue.
(test (op self-evaluating?) (reg exp))
(branch (label ev-self-eval))
(test (op variable?) (reg exp))
(branch (label ev-variable))
(test (op quoted?) (reg exp))
(branch (label ev—-quoted))
(test (op assignment?) (reg exp))
(branch (label ev—assignment))
(test (op definition?) (reg exp))
(branch (label ev—definition))
(test (op if?) (reg exp))
(branch (label ev-if))
(test (op lambda?) (reg exp))
(branch (label ev-lambda))
(test (op begin?) (reg exp))
(branch (label ev-begin))
(test (op application?) (reg exp))
(branch (label ev—application))
(goto (label unknown-expression-type))

o self-evaluating expressions
m variable names

w quoted expressions
LAMBDA expressions

R R R R R R R R LR R R R R R R R R R R R LR LR LR R R R EEIRLRLRLE]

ev-self-eval
(assign val (reg exp))
(goto (reg continue))
ev-variable
(assign val (op lookup—variable—value) (reg exp) (reg env))
(goto (reg continue))
ev-quoted
(assign val (op text-of-quotation) (reg exp))
(goto (reg continue))
ev-lambda
(assign unev (op lambda—parameters) (reg exp))
(assign exp (op lambda-body) (reg exp))
(assign val (op make—procedure)
(reg unev) (reg exp) (reg env))
(goto (reg continue))

I R R R R R R R R R RR R R R R R LR R R R R R R R R LR ERRREERLRLRLE]

procedure applications

ev-application

"

”

This ultimately ends up in either
primitive—apply (which restores continue), or

compound-apply (which winds up in ev—sequence, which restores continue)

(save continue)

"

"

We save env to evaluate all the operands in —— the operator and all its
operands must be evaluated in the same environment.

(save env)
(assign unev (op operands) (reg exp))

i

"

We save unev (the list of remaining unevaluated operands) because
this register tends to be used as a temporary.

(save unev)

(assign exp (op operator) (reg exp))

(assign continue (label ev—-appl—-did—operator))

(goto (label eval-dispatch))
ev-appl-did—-operator

"

u

(rest
(rest

The evaluated procedure is now in the val register. We move it (below)
into the proc register, and save that register (if there are any
arguments to evaluate) to protect against subsidiary procedure
applications.

argl holds the list of evaluated arguments.

unev holds the list of remaining unevaluated arguments.
ore unev)
ore env)

(assign argl (op empty-arglist))
(assign proc (reg val))

(test

(op no—operands?) (reg unev))

(branch (label apply-dispatch))
(save proc)
ev—appl-operand-loop

"

Save argl to protect agains subsidiary procedure calls.

(save argl)
(assign exp (op first-operand) (reg unev))

i

(test

Are we evaluating the last operand? If so, don’t bother saving any
registers; just go evaluate it.
(op last-operand?) (reg unev))

(branch (label ev-appl-last-arg))

This is not the last operand. Again save env and unev. Call
eval-dispatch to evaluate the operand.

(save env)

(save unev)

(assign continue (label ev—appl-accumulate—arg))

(goto (label eval-dispatch))
ev-appl-accumulate-arg

"

(rest
(rest
(rest

Restore all the registers saved around the call, move the evaluated
argument into the argl list, and truncate the unev list. Then go
back around the loop again.

ore unev)

ore env)

ore argl)

(assign argl (op adjoin-arg) (reg val) (reg argl))

(assign unev (op rest-operands) (reg unev))

(goto (label ev—-appl-operand-loop))
ev-appl-last-arg

We're evaluating the last operand. Just call eval-dispatch.

(a’ssign continue (label ev—appl-accum-last-arg))
(goto (label eval-dispatch))
ev-appl-accum-last-arg

”

Now restore the argl list, accumulate the last (evaluated) argument

eceval.scm
~/umb/cs450/ch5.BASE/

3
12/25/10

;;intoit, and restore the proc register.
(restore argl)
(assign argl (op adjoin—arg) (reg val) (reg argl))
(restore proc)
(goto (label apply-dispatch)) ; This is not needed; could just fall
; through. (The label is needed,
; though, since apply—dispatch is
;. jumped to from other places.)
apply—dispatch
;v Onentry,
" proc contains the procedure to apply.
argl contains the argument list.
The continuation is at the top of the stack.

i On exit (from either primitive—apply or compound-apply),
val will hold the result of the procedure application.
The code will exit to the continuation (popped from the stack).
(test (op primitive—procedure?) (reg proc))
(branch (label primitive—-apply))
(test (op compound-procedure?) (reg proc))
(branch (label compound—-apply))
(goto (label unknown-procedure-type))

primitive—apply
(assign val (op apply—primitive—procedure)
(reg proc)
(reg argl))
(restore continue)
(goto (reg continue))

compound-apply
(assign unev (op procedure—parameters) (reg proc))
(assign env (op procedure—environment) (reg proc))
(assign env (op extend—environment)
(reg unev) (reg argl) (reg env))
(assign unev (op procedure-body) (reg proc))
(goto (label ev-sequence))

Y BEGIN expressions

" sequences

IF expressions
assignment expressions
o definitions

ev-begin
(assign unev (op begin—actions) (reg exp))
(save continue)
(goto (label ev—-sequence))

;. Sequences occur in two places:
" a) The body of a procedure is a sequence.
b) A BEGIN expression is a stand-alone sequence.
So ev-sequence is jumped to initially from one of those two places.

ev-sequence
On entry,
unev contains the (unevaluated) sequence elements. The first
5 one will be put in the exp register.
v env contains the environment in which to evaluate the sequence
W elements.

o The continuation is on top of the stack.
(assign exp (op first—exp) (reg unev))
If this is the last element of the sequence, we just go evaluate
it. We don't need to save anything on the stack.
(test (op last-exp?) (reg unev))
(branch (label ev—-sequence-last-exp))

;. Otherwise, we need to save unev (to keep the remainder of the
unevaluated sequence) and env (so all elements of the sequence
can be evaluated in the same environment).

(save unev)

(save env)

(assign continue (label ev—sequence-continue))

(goto (label eval-dispatch))
ev-sequence—continue

;. Now we're back from evaluating the sequence element. Restore env and
unev, truncate unev, and go around the loop again.

(restore env)
(restore unev)
(assign unev (op rest—-exps) (reg unev))
(goto (label ev-sequence))
ev-sequence-last-exp
Just go evaluate the last element of the sequence tail-recursively.
(restore continue)
(goto (label eval-dispatch))

ev-if
(save exp)
(save env)
(save continue)
(assign continue (label ev-if-decide))
(assign exp (op if-predicate) (reg exp))
(goto (label eval-dispatch))

ev-if-decide
(restore continue) ; Since this is where eval-dispatch returns to,
(restore env) ; this is where the restores have to go.

(restore exp)

(test (op true?) (reg val))

(branch (label ev-if-consequent))
ev-if-alternative

(assign exp (op if-alternative) (reg exp))

(goto (label eval-dispatch))
ev-if-consequent

(assign exp (op if-consequent) (reg exp))

(goto (label eval-dispatch))

ev-assignment
(assign unev (op assignment-variable) (reg exp))
(save unev)
(assign exp (op assignment-value) (reg exp))
(save env)
(save continue)
(assign continue (label ev-assignment-1))
(goto (label eval-dispatch))
ev-assignment-1

(restore continue) ; Since this is where eval—dispatch returns to,
(restore env) ; this is where the restores have to go.
(restore unev)

(perform

(op set-variable-value!) (reg unev) (reg val) (reg env))
(assign val (const ok))
(goto (reg continue))

ev—definition
(assign unev (op definition—variable) (reg exp))

eceval.scm
~/umb/cs450/ch5.BASE/

4
12/25/10

(save unev)

(assign exp (op definition—value) (reg exp))

(save env)

(save continue)

(assign continue (label ev-definition—1))

(goto (label eval-dispatch))
ev—definition-1

(restore continue) ; Since this is where eval-dispatch returns to,
(restore env) ; this is where the restores have to go.
(restore unev)

(perform

(op define—variable!) (reg unev) (reg val) (reg env))
(assign val (const ok))
(goto (reg continue))

"(EXPLICIT CONTROL EVALUATOR LOADED)

