CS450 - Structure of Higher Level Languages

Infinite Streams

October 26, 2020



Infinitely Long Streams

We can use streams to represent infinitely long sequences:

(define (integers-starting-from n)
(cons-stream n (integers-starting-from (+ n 1))))

(define integers (integers-starting-from 1))
Then we can filter these infinite sequences, just as before:

(define (divisible? x y)
(= (remainder x y) 0) )

(define no-sevens

(stream-filter (lambda (x) (not (divisible? x 7)))
integers))

Nurit Haspel CS450 - Structure of Higher Level Languages



Infinitely Long Streams

If we define

(define (stream-ref stream n)
(if (=n 0)
(stream-car stream)
(stream-ref (stream-cdr stream) (- n 1)) ))

then (stream-ref no-sevens 100) will evaluate to 117.
Here is a neat way to produce the Fibonacci sequence:

(define (fibgen a b)
(cons-stream a (fibgen b (+ a b))))

(define fibs (fibgen 0 1))

Nurit Haspel CS450 - Structure of Higher Level Languages



Getting Prime Numbers

The sieve of Eratosthenes is an efficient way to produce prime
numbers.

@ Given a prime number, filter out all of its multiples.

@ Of the remaining numbers, the next one is the next prime.
@ Repeat...

e Start from 2.

Nurit Haspel CS450 - Structure of Higher Level Languages



Getting Prime Numbers

Here is how we get the primes, using a form of the sieve of
Eratosthenes:

(define (sieve stream)
(cons-stream
(stream-car stream)
(sieve (stream-filter
(lambda (x)
(not (divisible? x (stream-car stream))))
(stream-cdr stream)))))

(define primes (sieve (integers-starting-from 2)))

You can now try evaluating (stream-ref primes 50).

Nurit Haspel CS450 - Structure of Higher Level Languages



Defining Streams Implicitly

(define ones (cons-stream 1 ones))

(define (add-streams sl s2)
(stream-map + sl s2))

(define integers (cons-stream 1
(add-streams ones integers)))

(define fibs
(cons-stream 0
(cons-stream 1
(add-streams (stream-cdr fibs)
fibs))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Defining Streams Implicitly

(define (scale-stream stream factor)
(stream-map (lambda (x) (* x factor)) stream))

(define double (cons-stream 1 (scale-stream double 2)))

Nurit Haspel CS450 - Structure of Higher Level Languages



Defining Streams Implicitly

;5> prime numbers -- really clever,
;55 and efficient because it only
;33 checks divisibility by numbers less than sqrt(n).

(define primes
(cons-stream
2
(stream-filter prime? (integers-starting-from 3))))

(define (prime? n)
(define (iter ps)
(cond ((> (square (stream-car ps)) n) #t)
((divisible? n (stream-car ps)) #f)
(else (iter (stream-cdr ps)))))
(iter primes))

Nurit Haspel CS450 - Structure of Higher Level Languages



Streams of Pairs

@ If we want to produce infinite streams of pairs we'll run into a
problem because the “looping” must range over an infinite set.

@ For example, suppose we want to produce the stream of pairs
of all integers (i,/) with i < j such that /i + j is prime.

e If int-pairs is the sequence of all pairs of integers (/,/) with
i < j, we can do the following:

(stream-filter (lambda (pair)
(prime? (+ (car pair) (cadr pair))))

int-pairs)

(we assume every pair is a list)

Nurit Haspel CS450 - Structure of Higher Level Languages



How Do We Produce int-pairs?

@ More generally, suppose we have two streams S = (S;) and
T = (T;), and imagine the infinite rectangular array

(50, To) (507 Tl) (507 T2)
(51, To) (S1,T1) (51, T2)..
@ We wish to generate a stream that contains all the pairs in
the array that lie on or above the diagonal, i.e., the pairs

(50, To) (50, Tl) (50, T2)
(51, T1) (51, T2)...
(S2, T2)...
@ If both S and T are the streams of integers, this will be our
desired int-pairs.

Nurit Haspel CS450 - Structure of Higher Level Languages



Streams of Pairs

@ In general, the stream of pairs (pairs S T) is composed of
three parts:

@ the pair (Sp, Tp), the rest of the pairs in the first row, and the
remaining pairs:
(S0, To) | (S0, T1) (S0, T2)...
(51, 1) (51, To)...
(S2, T2)...
@ The third piece in this decomposition (pairs that are not in
the first row) is (recursively) the pairs formed from
(stream-cdr S) and (stream-cdr T).

@ Also note that the second piece (the rest of the first row) is

(stream—map (lambda (x) (list (stream-car s) x))
(stream-cdr t))

Nurit Haspel CS450 - Structure of Higher Level Languages



Streams of Pairs

@ Thus we can form our stream of pairs as follows:

(define (pairs s t)
(cons-stream
(1list (stream-car s) (stream-car t))
(<combine-in-some-way>
(stream-map (lambda (x) (list (stream-car s) x))
(stream-cdr t))
(pairs (stream-cdr s) (stream-cdr t)))))

@ We must find a way to combine the two inner streams.
@ One idea is to use the stream analog of the list append:

(define (stream-append si s2)
(if (stream-null? s1) s2
(cons-stream (stream-car s1)
(stream-append (stream-cdr sl1) s2))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Streams of Infinite Pairs

@ This is unsuitable for infinite streams because it takes all the
elements from the first stream before incorporating the second
stream.

@ In particular, if we try to generate all pairs of positive integers
using
(pairs integers integers)
our stream will first run through all pairs with the first integer

equal to 1, and will never produce pairs with any other value
of the first integer.

@ We need to devise an order of combination that ensures that
every element will eventually be reached if we let our program
run long enough.

Nurit Haspel CS450 - Structure of Higher Level Languages



Interleave

(define (interleave s1 s2)
(if (stream-null? s1) s2
(cons-stream (stream-car si1)
(interleave s2 (stream-cdr s1)))))

@ Interleave takes elements alternately from the two streams.

@ Every element of the second stream will eventually find its way
into the interleaved stream, even if the first stream is infinite.

@ We can thus generate the required stream of pairs as

(define (pairs s t)
(cons-stream
(list (stream-car s) (stream-car t))
(interleave
(stream-map (lambda (x) (list (stream-car s) x))
(stream-cdr t))
(pairs (stream-cdr s) (stream-cdr t)))))

Nurit Haspel CS450 - Structure of Higher Level Languages



