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Integer Properties

Integers are a natural component of everyday life and easy to
understand.

Number theory was studied primarily for its own sake for the
better part of the last several thousand years, without any
particular application as the goal.

In the last few decades number theory has emerged as a
critical component of many applications, especially in
computer science.

In particular, number theory forms the mathematical basis for
modern cryptography, the study of secure communication.
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Integer Division

If a and b are integers with a 6= 0, we say that a divides b if
there is an integer c so that b = ac.

When a divides b we say that a is a factor of b and that b is a
multiple of a.

The notation a|b means that a divides b.

We write a - b when a does not divide b.

For integers a, b, and c it is true that

if a|b and a|c , then a|(b + c)
Example: 3|6 and 3|9, so 3|15.
if a|b, then a|bc for all integers c
Example: 5|10, so 5|20, 5|30, 5|40, ...
if a|b and b|c , then a|c
Example: 4|8 and 8|24, so 4|24.
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Prime Numbers

A positive integer p greater than 1 is called prime if the only
positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is
called composite.

The fundamental theorem of arithmetic:

Every positive integer can be written uniquely as the product
of primes, where the prime factors are written in order of
increasing size.

Examples:

15 = 3 ∗ 5

48 = 2 ∗ 2 ∗ 2 ∗ 2 ∗ 3 = 24 ∗ 3

17 = 17

100 = 2 ∗ 2 ∗ 5 ∗ 5 = 22 ∗ 52

515 = 5 ∗ 103
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Prime Numbers

If n is a composite integer, then n has a prime divisor less
than or equal to

√
n.

This is easy to see: if n is a composite integer, it must have
two divisors p1 and p2 such that p1 ∗ p2 = n and p1 ≥ 2 and
p2 ≥ 2.

p1 and p2 cannot both be greater than
√
n because then

p1 ∗ p2 > n

If the smaller number of p1 and p2 is not a prime itself, then
it can be broken up into prime factors that are smaller than
itself but ≥ 2.
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The Division Algorithm

Let a be an integer and d a positive integer.

Then there are unique integers q and r , with 0 ≤ r < d , such
that a = dq + r .

In the above equation:

d is called the divisor,
a is called the dividend,
q is called the quotient, and
r is called the remainder.
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The Division Algorithm

Example: When we divide 17 by 5, we have
17 = 5 ∗ 3 + 2.

17 is the dividend,

5 is the divisor,

3 is called the quotient, and

2 is called the remainder.

Nurit Haspel CS220/Math320 - Applied Discrete Mathematics



The Division Algorithm

Another Example: What happens when we divide -11 by 3?

Note that the remainder cannot be negative.

−11 = 3 ∗ (−4) + 1.

-11 is the dividend,

3 is the divisor,

-4 is called the quotient, and

1 is called the remainder.
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Common Divisors

Let a and b be integers, not both zero.

The largest integer d such that d |a and d |b is called the
greatest common divisor of a and b.

The greatest common divisor of a and b is denoted by gcd(a,
b).

Example 1: What is gcd(48, 72) ?

The positive common divisors of 48 and 72 are: 1, 2, 3, 4, 6,
8, 12, 16, and 24, so gcd(48, 72) = 24.

Example 2: What is gcd(19, 72) ?

The only positive common divisor of 19 and 72 is 1, so
gcd(19, 72) = 1.
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Greatest Common Divisors

Using prime factorizations:
a = pa11 pa22 . . . pann , b = pb11 pb22 . . . pbnn ,

where p1 < p2 < · · · < pn and ai , bi ∈ N for 1 ≤ i ≤ n

gcd(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 . . . p

min(an,bn)
n

Example:

a = 60 = 22 ∗ 31 ∗ 51

b = 54 = 21 ∗ 33 ∗ 50

gcd = 21 ∗ 31 = 6
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Relatively Prime Integers

Definition: Two integers a and b are relatively prime if gcd(a,
b) = 1.

Examples:

Are 15 and 28 relatively prime?

Are 55 and 28 relatively prime?

Are 35 and 28 relatively prime?

Yes, yes, no.
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Relatively Prime Integers

Definition: The integers a1, a2, . . . , an are pairwise relatively
prime if gcd(ai , aj) = 1 whenever 1 ≤ i < j ≤ n.

Examples:
Are 15, 17, and 27 pairwise relatively prime?

No, because gcd(15, 27) = 3.

Are 15, 17, and 28 pairwise relatively prime?

Yes, because gcd(15, 17) = 1, gcd(15, 28) = 1 and gcd(17,
28) = 1.
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Least Common Multiple

Definition:
The least common multiple of the positive integers a and b is
the smallest positive integer that is divisible by both a and b.

We denote the least common multiple of a and b by lcm(a, b).

Examples:

lcm(3,7) = 21

lcm(4,6) = 12

lcm(5,10) = 10
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GCD and LCM

Example from before:

a = 60 = 22 ∗ 31 ∗ 51

b = 54 = 21 ∗ 33 ∗ 50

gcd(a, b) = 21 ∗ 31 ∗ 50 = 6

lcm(a, b) = 22 ∗ 33 ∗ 51 = 540

As you see, a ∗ b = gcd(a, b) ∗ lcm(a, b)
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Modular Arithmetics

Let a be an integer and m be a positive integer.

We denote by a mod m the remainder when a is divided by
m.

9 mod 4 = 1

9 mod 3 = 0

9 mod 10 = 9

-13 mod 4 = 3
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Modulo Congruence

Let a and b be integers and m be a positive integer.
We say that a is congruent to b modulo m if m divides a - b.
We use the notation a ≡ b( mod m) to indicate that a is
congruent to b modulo m.
In other words: a ≡ b( mod m) if and only if a mod m = b
mod m (both leave the same remainder when divided by m).
Everyday example of mod counting:

1
2

3

4
567

8

9

10
11 12

1
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Modulo Congruence

Examples:

Is it true that 46 ≡ 68 (mod 11) ?

Yes, because 11|(46− 68).

Is it true that 46 ≡ 68 (mod 22)?

Yes, because 22|(46− 68).

For which integers z is it true that z ≡ 12 (mod 10)?

It is true for any z ∈ {. . . ,−28,−18,−8, 2, 12, 22, 32, . . . }

Theorem

Let m be a positive integer. The integers a and b are congruent
modulo m if and only if there is an integer k such that a = b + km.
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Modulo Congruence

Theorem

Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod
m), then a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

Proof:

We know that a ≡ b (mod m) and c ≡ d (mod m) implies
that there are integers s and t with b = a + sm and d = c +
tm.

Therefore, b + d = (a + sm) + (c + tm) = (a + c) + m(s + t)
and bd = (a + sm)(c + tm) = ac + m(at + cs + stm).

Hence, a + c ≡ b + d (mod m) and ac ≡ bd (mod m)
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The Euclidean Algorithm

The Euclidean Algorithm finds the greatest common divisor of
two integers a and b.

It is based on the following lemma: if a ≡ c( mod b), then
gcd(a, b) = gcd(c , b).

Proof: if a ≡ c( mod b), then b|(a− c), so there is a y such
that a− c = by , i.e., c = a− by .

If any number d divides both a and b, then it also divides
a− by .

Therefore any common divisor of a and b is also a common
divisor of c and b.

Similarly, if d divides both c and b, then it also divides
c + by = a, so any common divisor of c and b is a common
divisor of a and b.

This shows that the common divisors of a and b are exactly
the common divisors of c and b, so, in particular, they have
the same greatest common divisor.
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The Euclidean Algorithm

The Euclidean algorithm finds the smallest c in order to
converge fast.

For example, if we want to find gcd(287, 91), we divide 287
(the larger number) by 91 (the smaller one):

287 = 91*3 + 14

287 - 91*3 = 14

287 + 91*(-3) = 14

We know that for integers a, b and c, if a|b and a|c, then
a|(b + c) for all integers c.

Therefore, any divisor of 287 and 91 is also a divisor of 287 +
91*(-3), which is 14.

Consequently, the gcd of 287 and 91 must be the same as the
greatest common divisor of 14 and 91:

gcd(287, 91) = gcd(91,14).
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The Euclidean Algorithm

In the next step, we divide 91 by 14: 91 = 14 ∗ 6 + 7

This means that gcd(91, 14) = gcd(14, 7).

So we divide 14 by 7: 14 = 7*2 + 0

We find that 7|14, and thus gcd(14, 7) = 7.

Therefore, gcd(287, 91) = 7.
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The Euclidean Algorithm

In pseudocode, the algorithm can be implemented as follows:

Algorithm 1 procedure gcd(a, b: positive integers)
1: x = a
2: y = b
3: while y 6= 0 do
4: r = x mod y
5: x = y
6: y = r
7: end while
8: return x
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Representations of Integers

Let b be a positive integer greater than 1 (the base).

Then if n is a positive integer, it can be expressed uniquely in
the form:
n = akb

k + ak−1b
k−1 + · · ·+ a1b + a0,

where k is a nonnegative integer, a0, a1, . . . , ak are
nonnegative integers less than b, and ak > 0.

Example for b=10:
859 = 8 ∗ 102 + 5 ∗ 101 + 9 ∗ 100

Example for b=2 (binary expansion):
(10110)2 = 1 ∗ 24 + 1 ∗ 22 + 1 ∗ 21 = (22)10

Example for b=16 (hexadecimal expansion):
(we use letters A to F to indicate numbers 10 to 15)
(3A0F )16 = 3 ∗ 163 + 10 ∗ 162 + 15 ∗ 160 = (14863)10
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Representations of Integers

How can we construct the base b expansion of an integer n?

First, divide n by b to obtain a quotient q0 and remainder a0,
that is,
n = bq0 + a0, where 0 ≤ a0 < b.

The remainder a0 is the rightmost digit in the base b
expansion of n.

Next, divide q0 by b to obtain:
q0 = bq1 + a1, where 0 ≤ a1 < b.

a1 is the second digit from the right in the base b expansion
of n.

Continue this process until you obtain a quotient equal to
zero.
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Representations of Integers

Example: What is the base 8 expansion of (12345)10?

First, divide 12345 by 8:

12345 = 8 ∗ 1543 + 1

1543 = 8 ∗ 192 + 7

192 = 8 ∗ 24 + 0

24 = 8 ∗ 3 + 0

3 = 8 ∗ 0 + 3

The result is: (12345)10 = (30071)8.
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Representations of Integers

Algorithm 2 base-b-expansion(n, b: positive integers)
1: q = n
2: k = 0
3: while (q 6= 0) do
4: ak = q mod b
5: q = bq/bc
6: k = k + 1
7: end while
8: return (ak−1 . . . a1a0)
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Addition of Integers

How do we (humans) add two integers?

1
7
1
5
1
83

+ 4932

12515

Binary expansions:
1

(1
1

011)2
+ (1010)2

(10101)2
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Addition of Integers

Let a = (an−1an−2 . . . a1a0)2, b = (bn−1bn−2 . . . b1b0)2.

How can we algorithmically add these two binary numbers?

First, add their rightmost bits:
a0 + b0 = c0 ∗ 2 + s0,

where s0 is the rightmost bit in the binary expansion of a + b,
and c0 is the carry.

Then, add the next pair of bits and the carry:
a1 + b1 + c0 = c1 ∗ 2 + s1,

where s1 is the next bit in the binary expansion of a + b, and
c1 is the carry.

Continue this process until you obtain cn−1.

The leading bit of the sum is sn = cn−1.

The result is: a + b = (snsn−1 . . . s1s0)2
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Addition of Integers

Example: Add a = (1110)2 and b = (1011)2.

a0 + b0 = 0 + 1 = 0 ∗ 2 + 1, so that c0 = 0 and s0 = 1.

a1 + b1 + c0 = 1 + 1 + 0 = 1 ∗ 2 + 0, so c1 = 1 and s1 = 0.

a2 + b2 + c1 = 1 + 0 + 1 = 1 ∗ 2 + 0, so c2 = 1 and s2 = 0.

a3 + b3 + c2 = 1 + 1 + 1 = 1 ∗ 2 + 1, so c3 = 1 and s3 = 1.

s4 = c3 = 1.

Therefore, s = a + b = (11001)2.
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Addition of Binary Integers

Algorithm 3 add(a, b: positive integers)

1: c = 0
2: for j = 0 to n-1 {larger integer (a or b) has n digits} do
3: d = b(aj + bj + c)/2c
4: sj = aj + bj + c − 2d
5: c = d
6: end for
7: sn = c
8: return (snsn−1 . . . s1s0)2
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