
CS450 - Structure of Higher Level Languages

Introduction

September 14, 2020

Contact Information

Instructor: Nurit Haspel

http://www.cs.umb.edu/~nurith

email: nurit.haspel@umb.edu

Course webpage: http://www.cs.umb.edu/cs450/

Office hours – Tu Th 12:30-2:00 on the following link:
https://us.bbcollab.com/guest/

c264634eb35b46818b823d825eb2393a.

To access the classroom on Blackboard, go to ”Blackboard
Collaborate Ultra” on the left.

Go into the course room (on top).

Course schedule: Mo We 5:30-6:45 On Blackboard

Lectures will be live and recorded.

Nurit Haspel CS450 - Structure of Higher Level Languages

http://www.cs.umb.edu/~nurith
mailto:nurit.haspel@umb.edu
http://www.cs.umb.edu/cs450/
https://us.bbcollab.com/guest/c264634eb35b46818b823d825eb2393a
https://us.bbcollab.com/guest/c264634eb35b46818b823d825eb2393a

Course Description

The syntax and semantics of higher-level languages are
treated. Formal specifications of syntax and models of
semantics will be used.

Topics: mechanisms for parameter passing, scoping, dynamic
storage allocation and systems interfacing. Both compiled and
interpreted languages will be used as examples.

The language of instruction is Scheme, a dialect of LISP,
which is taught in the course.

See the course Syllabus at
http://www.cs.umb.edu/cs450/Syllabus.pdf

Prerequisites are CS310 (Advanced Data Structures and
Algorithms) and CS220/Math320 (Applied Discrete
Mathematics) or permission from the instructor.

Nurit Haspel CS450 - Structure of Higher Level Languages

http://www.cs.umb.edu/cs450/Syllabus.pdf

Administrative Stuff

A homework assignment will be given every 1–2 weeks
(80–90% of the grade).

There will be 1-2 online quizzes (10–20% of the grade).

No final exam. Therefore, I will be very strict with academic
dishonesty.

I will use a plagiarism detection software and you will get an F
if you get caught (and you will get caught).

I will use Piazza to communicate with the class.

Homework should be submitted through Gradescope.

Nurit Haspel CS450 - Structure of Higher Level Languages

Checklist

Download Dr. Racket: racket-lang.org.

I added you to Piazza.

Register to Gradescope with your UMB e-mail. Code was (or
will be) provided on Piazza

Make sure you can access Blackboard and know how to log in
to the class space.

Make sure you check your UMB e-mail regularly.

Nurit Haspel CS450 - Structure of Higher Level Languages

racket-lang.org

Scheme

Scheme is a dialect of Lisp (List Processing).

It is the second oldest programming language, after Fortran.

Amazingly enough, however, both are still used:

Fortran: used for scientific applications, number crunching,
massive amounts of data. Compilers for Fortran can
generate extremely efficient code.

Lisp: used for academic research into programming
language design, computational models, prototyping,
AI research, natural language studies,

Nurit Haspel CS450 - Structure of Higher Level Languages

Scheme

Languages such as Fortran, Algol, Pascal, C, C++, Java, Perl,
Python are examples of imperative programming languages.

They are based on instructions.

Lisp has some imperative constructs, but its soul is functional.

In particular, it developed originally from a computing model
called the lambda calculus, which was invented in 1936 by
Alonzo Church to help in investigating what functions could
be regarded as computable.

Nurit Haspel CS450 - Structure of Higher Level Languages

Church-Turing Hypothesis

Those functions which are expressible in lambda calculus (which
turn out to be the same as all those functions which are
computable by Turing machines) constitute exactly the class of
functions which we naturally regard as computable.

To program in a functional language such as Scheme, you
really have to forget everything you think you know about
programming in Java, or C++, or Python, and start from the
beginning.

As we get deeper into Scheme, we will see how it can model
different kinds of languages for us.

Nurit Haspel CS450 - Structure of Higher Level Languages

Some First Things to Know About Lisp

Lisp is typically interpreted rather than compiled.

Parentheses always have meaning in Lisp, and it is not the
meaning you are used to.

Identifiers (e.g., symbols) are lexically more diverse than in
most programming languages. For instance

*a is a symbol.
* a is two symbols (* followed by a).
+ is pre-defined to be the addition operator. But it could be
redefined to be something else.
On the other hand, signed numbers are a special case:

+3 is the number 3

−3 is the number −3

Nurit Haspel CS450 - Structure of Higher Level Languages

Some first things to know about Lisp

Lisp is an expression language. In its pure form, there are no
imperative statements. Instead, the interpreter

reads an expression,
evaluates it, and

prints the resulting value (which might be another
expression).

That is, the interpreter itself (which is of course a computer
program) is implemented as what usually called a
read-eval-print loop.

Nurit Haspel CS450 - Structure of Higher Level Languages

Racket and Scheme

The racket language is fully documented here:
https://docs.racket-lang.org/reference/index.html

Racket is a descendant of scheme – there are some differences.

We will be using (mostly) the old scheme (R5RS) to comply
with the book, with small modifications.

The racket interpreter supports scheme for backward
compatibility.

See demo for the racket package.

You can also run from the command line.

Nurit Haspel CS450 - Structure of Higher Level Languages

https://docs.racket-lang.org/reference/index.html

Using Scheme

==> 27

27
==>

Here is a more substantive example, illustrating a procedure
application (which is what most of the rest of us call a “function
call”):

Expression Evaluates to
(+ 7 4) 11

Nurit Haspel CS450 - Structure of Higher Level Languages

Reading this Expression

The parentheses indicate a function call (in this case; they can
also indicate a special form, which we will discuss later).

The first element of the list inside the parentheses is the
procedure – in this case, it is the procedure indicated by +,
which is addition.

The remaining elements of the list inside the parentheses are
the arguments of the function.

Note that in effect Scheme implements prefix notation for all
functions, even for functions that we would normally write as
binary infix operators, like +.

Nurit Haspel CS450 - Structure of Higher Level Languages

More Examples

Expression Evaluates to

(- 7 4) 3

(-7 4) ??? (error)

(* 2 3) 6

(/ 10 2) 5

(/ 10 3) 3.33333 or 10/3

These are called compound expressions. Something like (function
arg1 arg2 ...) is called a combination.
(+ (* 3 5) (- 10 6)) evaluates to 19
and so on, to even more complicated expressions.

Nurit Haspel CS450 - Structure of Higher Level Languages

Variables

Expression Evaluates to

(define size 2) size

creates a variable whose value is 2.

Actually, normally the value never changes, so in some sense
this is not a “variable”. Technically, this expression creates a
symbol (size) which is bound to the value 2.

Also note that define is not a function, even though
syntactically it looks like one.

Instead, it is an example of what is called a special form.

We’ll see more about this as we go on.

Nurit Haspel CS450 - Structure of Higher Level Languages

Variables

Expression Evaluates to

size 2

(+ size 3) 5

This is bad practice, but possible:

(define + 3) +

(- 7 +) 4

Of course, in such a case, we could no longer add anything!

Nurit Haspel CS450 - Structure of Higher Level Languages

Expressions

There are no statements in Scheme! Everything is an expression.

Simple expression: There are two kinds of simple expressions:

constant: (e.g., 17, -6, +2.11, "hello", #t, #f)
variable name (e.g., abc, count, . . .)

Compound expression: (“compound” in this context just
means “not simple”).

A compound expression is a sequence of expressions (each
of which may be a simple or compound expression) enclosed
in parentheses: (expr1 expr2 ...).

There are two kinds of compound expressions:

Procedure call (e.g., (+ 5 -11), (square 6))
Special form (e.g., (define x 2))

Nurit Haspel CS450 - Structure of Higher Level Languages

Functions

Procedures are either

primitive (i.e., pre-defined in the language, like +), or
user-defined (e.g., square)

In some languages, there is a difference between a procedure
and a function.

In Scheme they mean the same thing. A procedure
application is just a fancy way of saying a function call.

Nurit Haspel CS450 - Structure of Higher Level Languages

User Defined Procedures

User-defined procedures are created by an extension of define:

(define (square x) (* x x))

We know we are defining a procedure and not a variable because a
parenthesis comes after the define. This expression is scanned as
follows:

(define (square x) (* x x))

name of formal body of

procedure parameter procedure

Of course, there can be more than one formal parameter.

Also, the body of the procedure can consist of more than one
expression.

We will see examples of this later.

Nurit Haspel CS450 - Structure of Higher Level Languages

User Defined Procedures

In case of more than one expression, all the expressions in the
body are evaluated, in the order written.

The value of the final one is the value of the procedure
application.

This expression can even easily be translated into English, as
follows:

(define (square x) (* x x))

To square something, multiply it by itself

Nurit Haspel CS450 - Structure of Higher Level Languages

User Defined Procedures

Now with this definition, we can do the following:

Expression Evaluates to

(square 10) 100

(square (+ 2 5)) 49

(square (square 3)) 81

Now we can make a further definition:

==> (define (sum-of-squares x y) (+ (square x) (square y)))

==> (sum-of-squares 3 4)

25

==>

(Note that we are using hyphens in the middle of symbol names. This is

OK in Scheme. It wouldn’t work in C or Java.)

Nurit Haspel CS450 - Structure of Higher Level Languages

User Defined Procedures

Let’s go farther:

==> (define (F A) (sum-of-squares (+ A 1)(* A 2)))

==>

Exactly how does the Scheme interpreter evaluate something
like (F 5)?

We’ll get to that shortly.

First, let’s handle conditional expressions.

Nurit Haspel CS450 - Structure of Higher Level Languages

Conditionals

We have two special symbols for truth values (also called
“Booleans”):

#t (means true)

#f (means false)

This is much better than C and languages derived from it, like
Java, which really don’t have a good notion of Boolean values.

In Scheme, an expression in a Boolean context is regarded as
true if and only if it evaluates to anything except #f.

So in particular, any number represents true, even 0. This
may surprise you.

Expression Evaluates to

(< 2 3) #t

(= +1 1) #t

(< 1 -1) #f

Nurit Haspel CS450 - Structure of Higher Level Languages

Conditional Special Forms

There are two special forms that we use with Boolean expressions:
if and cond. Here are some examples:

(if (< 2 3)

5

7)

Only evaluate the expression selected – that’s why it’s a special
form. For instance,

(if (< 2 3)

5

(/ 10 0))

This does not generate an error. But if if were a function (rather
than a special form name), it would generate an error.

Nurit Haspel CS450 - Structure of Higher Level Languages

Conditional Special Forms

(define (abs x)

(cond ((> x 0) x) ;;; the last x could have been

((= x 0) 0) ;;; a sequence of expressions

((< x 0) (- x)))) ;;; note unary minus

Evaluate only the sequence selected.

if and cond are expressions. For instance,

(define a 3)

(define b (+ a 1))

(+ 2 (if (< a b) b a))

((if (< a b) + -) a b)

Nurit Haspel CS450 - Structure of Higher Level Languages

Evaluate a Procedure Application

Here is the algorithm that the Scheme interpreter uses to
evaluate procedure calls.

It is called applicative-order evaluation. It is equivalent to
call-by-value.

1 Evaluate (in any order) all the expressions in the list.

2 Apply the procedure (which is the evaluated first expression)
to the arguments (which are the rest of the evaluated
expressions).

So we see that a function evaluates all its arguments
unconditionally.

This may seem trivial or obvious, but it actually isn’t.

We’ll be talking a lot more about this as the course goes on.

Nurit Haspel CS450 - Structure of Higher Level Languages

Evaluate a Procedure Application

The reason that if, cond, and define are called special
forms is that even though they look like functions (in that
they are the first elements of lists inside parentheses), they act
differently.

For instance, they may not evaluate all their arguments like
functions do. And they may not return a value. (The define
special form, for instance, does not evaluate both its
arguments – it only evaluates the last one – and it also does
not return a value.)

Here is an example of applicative-order evaluation (Recall
some of our user-defined procedures):

(define (square x) (* x x))

(define (sum-of-squares x y) (+ (square x) (square y)))

(define (F A) (sum-of-squares (+ A 1)(* A 2)))

Nurit Haspel CS450 - Structure of Higher Level Languages

Evaluate a Procedure Application

To evaluate (F 5), we proceed like this:

(F 5)

(sum-of-squares (+ 5 1)(* 5 2))

(sum-of-squares 6 10)

(+ (square 6) (square 10))

(+ (* 6 6) (* 10 10))

(+ 36 100)

136

Nurit Haspel CS450 - Structure of Higher Level Languages

Evaluate a Procedure Application

What we did was actually not quite correct, because it is not
quite what we said we would do.

We really should do something like this: Evaluate F and 5 to
transform (F 5) into the following:

("function having one parameter -- call it A --

and whose value is

(sum-of-squares (+ A 1) (* A 2))" 5)

which then becomes (when we apply the function)

(sum-of-squares (+ 5 1)(* 5 2))

and then we proceed as before.

Nurit Haspel CS450 - Structure of Higher Level Languages

The lambda Special Form

There is a way of doing this: we use another special form. We
could have defined

(define F

(lambda (A) (sum-of-squares (+ A 1)(* A 2))))

Thus, (lambda (x) (<stuff>)) is an unnamed function of
1 parameter whose body is (<stuff>).

In fact, (define (f x y) (<expression in x and y>))

is really turned by the interpreter internally into

(define f (lambda (x y) (<expression in x and y>)))

Nurit Haspel CS450 - Structure of Higher Level Languages

Some Examples

==> ((lambda (x) (+ x 3)) 4)

7

==>

The trouble is that since this function has no name, it can only be
used once. So the idea is that we can use define to give it a name:

==> (define f (lambda (x) (+ x 3)))

==> (f 4)

7

==> (f -3)

0

==>

and so on.

Nurit Haspel CS450 - Structure of Higher Level Languages

Some Examples

If we entered this expression:

==> (define (f x) (+ x 3))}

==>

then the interpreter actually turns it internally into the previous
one:

(define f (lambda (x) (+ x 3)))

Here is how (F 5) is really evaluated internally by the Scheme
interpreter:

Nurit Haspel CS450 - Structure of Higher Level Languages

Some Examples

(F 5)

;; Now eval F

((lambda (A) (sum-of-squares (+ A 1)(* A 2))) 5)

;; Now apply the function

(sum-of-squares (+ 5 1) (* 5 2))

;; Now eval every element

((lambda (x y) (+ (square x)(square y))) 6 10)

;; Now apply the function

(+ (square 6) (square 10))

;; Now eval every element

(+ ((lambda (x) (* x x)) 6) ((lambda (x) (* x x)) 10))

;; Now apply lambdas

(+ (* 6 6) (* 10 10))

;; Now eval every element

(+ 36 100)

;; Now apply the function

136

Nurit Haspel CS450 - Structure of Higher Level Languages

Some Examples

==> (define four 4)

==> (define (five) 5)

==> four

4

==> five

#<procedure:five>

==> (four)

*** error

==> (five)

5

==> (procedure? four)

#f

==> (procedure? five)

#t

Nurit Haspel CS450 - Structure of Higher Level Languages

Some Examples

Note: procedure? is a primitive procedure.

Note that the question mark is just another character in the
name.

The convention in Scheme is that a procedure that evaluates
to a Boolean ends in a question mark.

Nurit Haspel CS450 - Structure of Higher Level Languages

Normal Order Evaluation

This is a different method of evaluating expressions.

It is not the method used in Scheme, but it is very important,
and we will see examples of this later on.

If we changed Scheme so that it used normal-order evaluation,
we would evaluate procedure applications like this:

Nurit Haspel CS450 - Structure of Higher Level Languages

Normal Order Evaluation

1 Evaluate the leftmost subexpression of the list (i.e., the
operator).

2 Do the following:
1 If the procedure that is the value of that expression is

primitive, then

evaluate the other subexpressions (i.e., the arguments), and
apply the procedure to the resulting evaluated arguments (as
usual).

2 Otherwise (i.e., if the procedure is a user-defined procedure),

apply the procedure to the unevaluated argument expressions.

Normal-order evaluation corresponds to Algol’s call-by-name.

Nurit Haspel CS450 - Structure of Higher Level Languages

Normal Order Evaluation

Let’s evaluate (F 5) using normal-order evaluation:

(F 5)

;; Now eval F

((lambda (A) (sum-of-squares (+ A 1)(* A 2))) 5)

;; Now apply the function

(sum-of-squares (+ 5 1) (* 5 2))

;; Now eval sum-of-squares

((lambda (x y) (+ (square x)(square y))) (+ 5 1)(* 5 2))

;; Now apply fn.

(+ (square (+ 5 1)) (square (* 5 2)))

;; Now eval arguments

(+ ((lambda (x) (* x x)) (+ 5 1)) ((lambda (x) (* x x)) (* 5 2)))

(+ (* (+ 5 1) (+ 5 1)) (* (* 5 2) (* 5 2)))

(+ (* 6 6) (* 10 10))

(+ 36 100)

136

Nurit Haspel CS450 - Structure of Higher Level Languages

Normal Order Evaluation

Normal-order evaluation is also called lazy evaluation or delayed
evaluation – we don’t actually evaluate anything until we
absolutely need to.

Basic Fact: Whenever applicative-order evaluation yields a
result, normal-order evaluation yields the same result. But
there are cases when normal-order evaluation is more powerful.

For example:

(define f (lambda (x y) x))

(f 4 (/ 2 0))

The reason that Scheme uses applicative-order evaluation is:

It is easier to implement. This is a minor reason.

It leads to much more efficient code. This is the main reason.

Nurit Haspel CS450 - Structure of Higher Level Languages

