
CS450 - Structure of Higher Level Languages

Lexical Scoping, Recursion versus Iteration

September 14, 2020

Cond – Reminder

Remember how cond works:

(cond (<condition> <exp> <exp> <exp> ...)

(<condition> <exp> <exp> <exp> ...)

(<condition> <exp> <exp> <exp> ...)

...

(else <exp> <exp> <exp> ...)

;; this clause is optional

)

Nurit Haspel CS450 - Structure of Higher Level Languages

Let’s Use It

(define (count1 x)

(cond ((= x 0) (display x))

(else (display x)

(count1 (- x 1)))))

(define (count2 x)

(cond ((= x 0) (display x))

(else (count2 (- x 1))

(display x))))

Nurit Haspel CS450 - Structure of Higher Level Languages

Let’s Evaluate It

Now evaluate

==> (count1 4)

and

==> (count2 4)

Nurit Haspel CS450 - Structure of Higher Level Languages

Let’s Evaluate It

Let’s print them both out:

(count1 4)

(display 4) ;; prints 4

(count1 3)

(display 3) ;; prints 3

(count1 2)

(display 2) ;; prints 2

(count1 1)

(display 1) ;; prints 1

(count1 0)

(display 0) ;; prints 0

so it prints out

43210

Nurit Haspel CS450 - Structure of Higher Level Languages

Let’s Evaluate It

(count2 4)

(count2 3)(display 4)

(count2 2)(display 3)(display 4)

(count2 1)(display 2)(display 3)(display 4)

(count2 0)(display 1)(display 2)(display 3)(display 4)

(display 0)(display 1)(display 2)(display 3)(display 4)

so it prints out

01234

Nurit Haspel CS450 - Structure of Higher Level Languages

Analysis

Notice the difference in behavior at run-time: count2 cannot
display anything until the end – it has to store up all the
display actions until the final (count2 0) is evaluated.

What actually happens is that these actions are in effect
pushed onto a run-time stack.

count1, on the other hand, does not need to defer any
operations, and so doesn’t need to push anything on a stack
as it executes.

Nurit Haspel CS450 - Structure of Higher Level Languages

Tail Recursion

The way you can tell which of these behaviors will happen is
to look at the nature of the recursive call in each case:

In count1, the recursive call to count1 is the last thing that
is executed in the body of count1.

Thus by the time the recursive call is made, all the rest of the
body has been executed (or “evaluated”), and there is nothing
that needs to be deferred.

This is called tail recursion. It leads to a run-time behavior
that does not defer any operations.

In other languages such behavior is normally written as a loop.

In Scheme, we tend to write this recursively, but since this is
tail recursion, SICP calls this kind of code iterative.

We, however, along with everyone else in the world, call it tail
recursion.

Nurit Haspel CS450 - Structure of Higher Level Languages

Tail Recursion

In count2, the recursive call to count2 in the body of
count2 is followed by another expression to evaluate.

Thus, this code is not tail recursive, and the evaluation of
that following expression needs to be deferred. This kind of
code is called recursive by SICP.

So you have to be a bit careful when reading the book: when
the authors use the term recursive, they do not mean tail
recursive.

Nurit Haspel CS450 - Structure of Higher Level Languages

Tail Recursion

Thus, both count1 and count2 are syntactically recursive.
But count1 is tail recursive while count2 is not.

As we will see again and again, tail recursion is the natural
way to represent iterative computations (that is, computations
written as loops in other programming languages) in Scheme.

In most computer languages on the other hand, iterative
computations must be represented by special iteration
constructs like for loops in C or do loops in Fortran.

But in Scheme, they can be represented by tail-recursive
procedures, which (by the Scheme standard) must be
implemented as iterations.

We’ll talk a lot more about this as the course goes on.

Nurit Haspel CS450 - Structure of Higher Level Languages

Newton’s Method

This is the “divide-and-average” method for finding square
roots, which is extremely efficient (the number of correct
digits approximately doubles with each iteration)

For example, to find
√

2, we first pick any initial guess, say 1,
and proceed as follows:

Guess Quotient Average

1
2

1
= 2

2 + 1

2
= 1.5

1.5
2

1.5
= 1.33333

1.33333 + 1.5

2
= 1.4167

1.4167
2

1.4167
= 1.4118

1.4118 + 1.4167

2
= 1.4142

1.4142

Nurit Haspel CS450 - Structure of Higher Level Languages

In Scheme

(define (sqrt-iter guess x)

;; This implements the iteration.

(if (good-enough? guess x)

guess

(sqrt-iter (improve guess x) x)))

(define (improve guess x)

(average guess (/ x guess)))

(define (average x y)

(/ (+ x y) 2))

Nurit Haspel CS450 - Structure of Higher Level Languages

In Scheme

(define (good-enough? guess x)

;; guess, x could be a, b (for instance) here

(< (abs (- (square guess) x)) .001))

;; .001 is a "magic number"

(define (sqrt x)

;; Here’s where we start. We package up

;; the data and start the iteration.

(sqrt-iter 1 x))

Nurit Haspel CS450 - Structure of Higher Level Languages

Call Graph

Here is the call graph for the square root algorithm we just wrote
down:

sqrt

sqrt-iter

good-enough? improve

square abs average

Nurit Haspel CS450 - Structure of Higher Level Languages

Call Graph

The book rewrites the Scheme code above like this:

(define (sqrt x)

(define (good-enough? guess x)

(< (abs (- (square guess) x)) .001))

(define (improve guess x)

(average guess (/ x guess)))

(define (average x y)

(/ (+ x y) 2))

(define (sqrt-iter guess x)

(if (good-enough? guess x)

guess

(sqrt-iter (improve guess x) x)))

(sqrt-iter 1 x))

Nurit Haspel CS450 - Structure of Higher Level Languages

Call Graph

All the user cares about is the function sqrt.
The internal details can be hidden, as they are here.
Actually, it would be even better to write the code in a way
that accurately reflects the call graph, like this:

(define (sqrt x)

(define (sqrt-iter guess x)

(define (good-enough? guess x)

(< (abs (- (square guess) x)) .001))

(define (improve guess x)

(define (average x y)

(/ (+ x y) 2))

(average guess (/ x guess)))

(if (good-enough? guess x)

guess

(sqrt-iter (improve guess x)))) ; end sqrt-iter

(sqrt-iter 1 guess))

Nurit Haspel CS450 - Structure of Higher Level Languages

Lexical Scoping

Variables get looked up in the innermost scope in which they
are found.

This is called lexical scoping.

Now we can remove the variables available from an outer
scope.

These are all the inner x’s except the x in average, as well as
all the guess’s inside sqrt-iter.

Nurit Haspel CS450 - Structure of Higher Level Languages

Lexical Scoping

(define (sqrt x)

(define (sqrt-iter guess)

(define (good-enough?)

(< (abs (- (square guess) x)) .001))

(define (improve)

(define (average x y)

(/ (+ x y) 2))

(average guess (/ x guess)))

(if (good-enough?)

guess

(sqrt-iter (improve)))) ; end sqrt-iter

(sqrt-iter 1))

Note that x was originally bound in improve, but now it is free
(its value is not passed in, but is obtained from an outer scope).

Nurit Haspel CS450 - Structure of Higher Level Languages

A second application: the Euclidean algorithm

Euclid’s algorithm computes the GCD (greatest common divisor)
of two numbers a and b:

a b

206 40
40 6

6 4
4 2
2 0

so the GCD of 206 and 40 is 2.

Nurit Haspel CS450 - Structure of Higher Level Languages

A second application: the Euclidean algorithm

algorithm in Scheme, using the primitive procedure remainder:

(define (gcd a b)

(if (= b 0)

a

(gcd b (remainder a b))))

Theorem (Lamé, 1845)

If Euclid’s algorithm requires k steps, then the smaller of the two
input numbers is ≥ the kth Fibonacci number.

Nurit Haspel CS450 - Structure of Higher Level Languages

Proof of Lamé’s theorem

Lamé’s theorem can be proved by induction.

We start out the algorithm with two numbers a and b, where
a > b.

Let us set out the computation as follows:

n − 1 steps

n Fn a b
n − 1 Fn−1 b a mod b
n − 2 Fn−2 a mod b .

...
...

...
...

3 2 x y
2 1 y z
1 1 z 0

Nurit Haspel CS450 - Structure of Higher Level Languages

Proof of Lamé’s theorem

Here the number of steps in the process is k = n− 1. (That is,
there are n − 1 steps to get from the top row to the bottom.)

If 0 < b < a (as is true here), then a− b ≥ a mod b.

0 b 2b 3b 4b 5b 6b 7b 8b 9ba

a mod b

a− b

Nurit Haspel CS450 - Structure of Higher Level Languages

Proof of Lamé’s theorem

This is simply because a mod b is what is left after you
subtract as many b’s from a as you can.

Since b < a, you can subtract at least 1 b, so
a− b ≥ a mod b.

Thus a mod b + b ≤ a.

That is, in the second column from the right, the top element
is ≥ the sum of the next two elements below it.

By the same reasoning, this property holds all the way down
that column. Further, we know that y and z must be ≥ 1.

Nurit Haspel CS450 - Structure of Higher Level Languages

Proof of Lamé’s theorem

Working back up, we see that we can put in ≥ signs:

n − 1 steps

n Fn ≤ a b
n − 1 Fn−1 ≤ b a mod b
n − 2 Fn−2 ≤ a mod b .

...
...

...
...

...
3 2 ≤ x y
2 1 ≤ y z
1 1 ≤ z 0

and so we see that a ≥ Fn, and b ≥ Fn−1. Since the number of
steps in the algorithm is just k = n − 1, we have b ≥ Fn−1 = Fk ,
which is what the theorem asserts, and we are done.

Nurit Haspel CS450 - Structure of Higher Level Languages

Recursion versus iteration: factorials

Let us consider the factorial function n! = 1 · 2 . . . n. We can
compute this in Scheme as follows:

(define (factorial n)

(if (= n 1)

1

(* n (factorial (- n 1)))))

Nurit Haspel CS450 - Structure of Higher Level Languages

How Does It Work

(factorial 6)

(* 6 (factorial 5))

(* 6 (* 5 (factorial 4)))

(* 6 (* 5 (* 4 (factorial 3))))

(* 6 (* 5 (* 4 (* 3 (factorial 2)))))

(* 6 (* 5 (* 4 (* 3 (* 2 (factorial 1))))))

(* 6 (* 5 (* 4 (* 3 (* 2 1)))))

(* 6 (* 5 (* 4 (* 3 2))))

(* 6 (* 5 (* 4 6)))

(* 6 (* 5 24))

(* 6 120)

720

Nurit Haspel CS450 - Structure of Higher Level Languages

How Does It Work

This is an example of what the authors of our text call a
recursive procedure.

As we explained before, they call it recursive because the
operations are deferred.

We keep saving the numbers 6, 5, and so on until the very
end, when they get all multiplied together.

But suppose we didn’t really save them – suppose we kept
multiplying them as we went on, and passed the partial
products on as a parameter to the function?

Then there would be nothing to collect at the end.

Nurit Haspel CS450 - Structure of Higher Level Languages

How Does It Look Like

(define (factorial n)

(fact-iter 1 n))

(define (fact-iter product count-down)

(if (= count-down 1)

product

(fact-iter (* product count-down)

(- count-down 1))))

Nurit Haspel CS450 - Structure of Higher Level Languages

How Does It Look Like

(factorial 6)

(fact-iter 1 6)

(fact-iter 6 5)

(fact-iter 30 4)

(fact-iter 120 3)

(fact-iter 360 2)

(fact-iter 720 1)

720

Nurit Haspel CS450 - Structure of Higher Level Languages

The Book Version

The book gives a similar version, except that it counts up
instead ofdown.

Note that in this version we need a third argument to
fact-iter, because we are comparing count to max-count,
rather than to 1

(define (factorial n)

(fact-iter 1 1 n))

(define (fact-iter product count max-count)

(if (> count max-count)

product

(fact-iter (* count product)

(+ count 1)

max-count)))

Nurit Haspel CS450 - Structure of Higher Level Languages

The Book Version

(factorial 6)

(fact-iter 1 1 6)

(fact-iter 1 2 6)

(fact-iter 2 3 6)

(fact-iter 6 4 6)

(fact-iter 24 5 6)

(fact-iter 120 6 6)

(fact-iter 720 7 6)

720

Nurit Haspel CS450 - Structure of Higher Level Languages

Recursion vs. Iteration

So as we saw before with count1, although these versions of
the factorial procedure are syntactically recursive, none of
the operations are deferred – we don’t accumulate a big list of
“things to do”.

In an actual implementation, these “things” would be
accumulated on the stack.

For this reason, these new computations are called iterative.

And in fact it is easy to see that the code for both these
versions of factorial is tail-recursive.

Nurit Haspel CS450 - Structure of Higher Level Languages

Exercise

1 Rewrite this last version of factorial so that fact-iter is
an internal definition.

2 Show that the third argument to fact-iter can then be
eliminated.

Nurit Haspel CS450 - Structure of Higher Level Languages

Recursion versus iteration: the Fibonacci Numbers

For another example of recursion, let us compute the Fibonacci
numbers:

0 1 2 3 4 5 6 7 8 n
0 1 1 2 3 5 8 13 21 Fn

The recursive (mathematical) definition of these numbers is as
follows:

fib(n) =

0 if n = 0

1 if n = 1

fib(n − 1) + fib(n − 2) otherwise

Nurit Haspel CS450 - Structure of Higher Level Languages

The Fibonacci Numbers in Scheme

(define (fib n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib (- n 1)) (fib (- n 2))))))

Nurit Haspel CS450 - Structure of Higher Level Languages

What Could Possibly Go Wrong?

Well, everything...

(fib 1) (fib 0)

(fib 2) (fib 1) (fib 1) (fib 0) (fib 1) (fib 0)

(fib 3) (fib 2) (fib 2) (fib 1)

(fib 4) (fib 3)

(fib 5)

Nurit Haspel CS450 - Structure of Higher Level Languages

What Could Possibly Go Wrong?

This kind of process is called tree recursion and is extremely
inefficient. In fact, the number of leaves in the tree is Fn+1.

You may know that there is a clever formula for Fn:

Fn =
1√
5

((√
5 + 1

2

)n

−
(√

5− 1

2

)n
)

Now (
√

5 + 1)/2 = 1.618 . . . , and abs(
√

5− 1)/2 < 1, so for large
n,

Fn ∼=
1√
5

1.618n

which is an exponential.

So this recursive method is a perfectly terrible way of
computing the Fibonacci numbers. We say that this
computation is an O(1.6n) computation.

Nurit Haspel CS450 - Structure of Higher Level Languages

Iterative Fibonacci

On the other hand, there is an iterative way we can perform
this computation.

We do this, as before, by saving at each step the results we
need to compute the next step:

(define (fib n)

(fib-iter 1 0 n))

(define (fib-iter fn-1 fn-2 count)

(if (= count 0)

fn-2

(fib-iter (+ fn-1 fn-2) fn-1 (- count 1))))

Nurit Haspel CS450 - Structure of Higher Level Languages

Iterative Fibonacci

Here’s how it works out:

(fib 5)

(fib-iter 1 0 5)

(fib-iter 1 1 4)

(fib-iter 2 1 3)

(fib-iter 3 2 2)

(fib-iter 5 3 1)

(fib-iter 8 5 0)

5

and we see in this case that the computation is O(n), which is a
vast improvement.

Nurit Haspel CS450 - Structure of Higher Level Languages

Recursion Vs. Iteration: Exponentiation

Suppose we want to compute bn. (b stands for base.)

We will assume that both b and n are non-negative integers.

A naive way to compute this is recursively: we know that
bn = b ∗ bn−1, so we can write...

(define (expt b n)

(if (= n 0)

1

(* b (expt b (- n 1)))))

This is recursive, because the call to expt is deferred in the
tail of the computation.

The computation is O(n) in time and O(n) in space.

Nurit Haspel CS450 - Structure of Higher Level Languages

Recursion Vs. Iteration: Exponentiation

On the other hand, we can compute this iteratively (i.e., using
tail-recursion):

(define (expt-iter b counter product)

(if (= counter 0)

product

(expt-iter b

(- counter 1)

(* b product))))

This iterative (i.e., tail-recursive) procedure is O(n) in time, but
only O(1) in space.

Nurit Haspel CS450 - Structure of Higher Level Languages

Recursion Vs. Iteration: Exponentiation

An even better way to perform this computation is to use a
method of successive squaring. We use the fact that

bn =

(
b

n
2

)2
if n is even

b · bn−1 if n is odd

(define (fast-expt b n)

(cond ((= n 0) 1)

((even? n) (square (fast-expt b (/ n 2))))

(else (* b (fast-expt b (- n 1))))))

Nurit Haspel CS450 - Structure of Higher Level Languages

Recursion Vs. Iteration: Exponentiation

This procedure, even though it is not tail-recursive, is
O(log2 n) in both space and time.

So it’s a little worse in space, but a lot better in time.

Exercise: Can you show that this procedure is O(log2 n) in
time?

Nurit Haspel CS450 - Structure of Higher Level Languages

