
CS450 - Structure of Higher Level Languages

Metalinguistic Abstraction

November 2, 2020



Programming Languages Are Means to Model Complex
Problems

To design a complex system (of any kind) we need several
general techniques:

Combine primitive elements to form compound objects

Abstract compound objects to form higher-level building
blocks

Preserve modularity by adopting appropriate large-scale views
of system structure.

We have used scheme for this purpose, but as our problems
become more complex, we may need to resort to new
languages that help us express new ideas more effectively.

Nurit Haspel CS450 - Structure of Higher Level Languages



Metalinguistic Abstraction

Metalinguistic abstraction, establishing new languages,
plays an important role in all branches of engineering design.

It is particularly important to computer programming – we
can formulate new languages, and we can also implement
these languages by constructing evaluators.

An evaluator (or interpreter) for a programming language is a
procedure that, when applied to an expression of the language,
performs the actions required to evaluate that expression.

It is very important to remember that the evaluator, which
determines the meaning of expressions in a programming
language, is just another program.

Nurit Haspel CS450 - Structure of Higher Level Languages



Metalinguistic Abstraction

As a matter of fact, we can think of any program as a
”mini-language”.

The complex number package we mentioned earlier is the core
of a language that deals with complex numbers, their
representations and math operations, using primitives and
building higher-level abstractions.

We can also think of the RSA system in HW3 this way...

There are several other examples in the book – a digital logic
simulator, a polynomial manipulation system etc.

Nurit Haspel CS450 - Structure of Higher Level Languages



Metalinguistic Abstraction

In what follows we will use scheme to explore the ability of
languages to build other languages.

We will implement evaluators as procedures.

Lisp is especially suitable due to its ability to represent and
manipulate symbolic expressions.

We will build an evaluator for Lisp itself.

The evaluator is a subset of the Scheme language used in the
text.

It is rather simple, yet capable of executing most of the
programs in the text...

Nurit Haspel CS450 - Structure of Higher Level Languages



The Core of the Evaluator: Eval/Apply

The evaluation process can be described as the interplay between
two procedures: eval and apply.

Eval ApplyProcedure,
Arguments

Expression,

Environment

Nurit Haspel CS450 - Structure of Higher Level Languages



Eval

Eval takes as arguments an expression and an environment.

It classifies the expression and directs its evaluation.

Eval is structured as a case analysis of the syntactic type of
the expression to be evaluated.

We express the determination of the type of an expression
abstractly, making no commitment to any particular
representation for the various types of expressions.

The way we implement it allows us to change the syntax of
the language by using the same evaluator, but with a different
collection of syntax procedures.

Nurit Haspel CS450 - Structure of Higher Level Languages



Types of Expressions

Primitive expressions:
Self evaluating objects (like numbers), are evaluated to
themselves.
For variables, look up in the environment to find their values.

Special forms:
Quoted expressions are evaluated to the expression that was
quoted.
An assignment to (or a definition of) a variable recursively
calls eval to compute the new value to be associated with the
variable. The environment is modified accordingly.
An if expression requires special processing of its parts, so as
to evaluate the consequent if the predicate is true, or the
alternative otherwise.

Nurit Haspel CS450 - Structure of Higher Level Languages



Types of Expressions

Special forms: (cont.)

A lambda expression must be transformed into an applicable
procedure by packaging together the parameters and body
with the environment of the evaluation.
A begin expression requires evaluating its sequence of
expressions in the order in which they appear.
A cond is transformed into a nested if and evaluated.

Combinations:
For a procedure application, eval must recursively evaluate
the operator part and the operands of the combination.
The resulting procedure and arguments are passed to apply,
which handles the actual procedure application.

Nurit Haspel CS450 - Structure of Higher Level Languages



Definition of Eval (in text)

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))

((quoted? exp) (text-of-quotation exp))

((assignment? exp) (eval-assignment exp env))

((definition? exp) (eval-definition exp env))

((if? exp) (eval-if exp env))

((lambda? exp)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

((begin? exp)

(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(else

(error "Unknown expression type -- EVAL" exp))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Definition of Eval

In most Lisp implementations, eval is implemented by
dispatching on type.

This allows more flexibility in adding new types of expressions.

The way it is implemented here requires us to edit the
definition of eval whenever we add a new type.

For our purposes we will use a slightly different version (see
handout).

Nurit Haspel CS450 - Structure of Higher Level Languages



Definition of Apply

Apply takes two arguments, a procedure and a list of
arguments to which the procedure should be applied.

Apply classifies procedures into two kinds: It calls
apply-primitive-procedure to apply primitives;

Compound procedures are applied by sequentially evaluating
the expressions that make up the body of the procedure.

The environment for the evaluation of the body of a
compound procedure is constructed by extending the base
environment carried by the procedure to include a frame that
binds the parameters of the procedure to the arguments to
which the procedure is to be applied.

Nurit Haspel CS450 - Structure of Higher Level Languages



Definition of Apply (in text)

(define (apply procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))

((compound-procedure? procedure)

(eval-sequence

(procedure-body procedure)

(extend-environment

(procedure-parameters procedure)

arguments

(procedure-environment procedure))))

(else

(error

"Unknown procedure type -- APPLY" procedure))))

Nurit Haspel CS450 - Structure of Higher Level Languages



The CS450 Implementation

In HW6: Special forms to be stored in a 1-D lookup table, like
the one we saw earlier on.

The table is wrapped up in a ”dispatch on type” procedure
(that’s not called dispatch!), which supports insert, lookup
and display.

The eval implementation, named xeval, uses the table to
look up special forms.

We use tagged data (remember that?) to represent different
kinds of expressions (same as the text).

Nurit Haspel CS450 - Structure of Higher Level Languages



The CS450 Implementation

The values of the operands of an expression are being evaluated in
sequence.

(define (list-of-values exps env)

(if (no-operands? exps)

’()

(cons (xeval (first-operand exps) env)

(list-of-values (rest-operands exps) env))))

define (eval-if exp env)

(if (true? (xeval (if-predicate exp) env))

(xeval (if-consequent exp) env)

(xeval (if-alternative exp) env)))

Nurit Haspel CS450 - Structure of Higher Level Languages



Evaluating Different Expressions

((define (eval-sequence exps env)

(cond ((last-exp? exps) (xeval (first-exp exps) env))

(else (xeval (first-exp exps) env)

(eval-sequence (rest-exps exps) env))))

(define (eval-assignment exp env)

(let ((name (assignment-variable exp)))

(set-variable-value! name

(xeval (assignment-value exp) env)

env)

name)) ;; A & S return ’ok

(define (eval-definition exp env)

(let ((name (definition-variable exp)))

(define-variable! name

(xeval (definition-value exp) env)

env)

name)) ;; A & S return ’ok

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing Expressions

(define (self-evaluating? exp)

(or (number? exp)

(string? exp)

(boolean? exp) ))

(define (variable? exp) (symbol? exp))

(define (quoted? exp)

(tagged-list? exp ’quote))

(define (text-of-quotation exp) (cadr exp))

(define (tagged-list? exp tag)

(if (pair? exp)

(eq? (car exp) tag)

#f))

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing Assignments

(define (assignment? exp)

(tagged-list? exp ’set!))

(define (assignment-variable exp) (cadr exp))

(define (assignment-value exp) (caddr exp))

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing Definitions

(define (definition? exp)

(tagged-list? exp ’define))

(define (definition-variable exp)

(if (symbol? (cadr exp))

(cadr exp)

(caadr exp)))

(define (definition-value exp)

(if (symbol? (cadr exp))

(caddr exp)

(make-lambda (cdadr exp)

(cddr exp))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing Definitions

A definition can either be

(define <var> <value>)

or

(define (<var> <par_1> ... <par_n>) <body>)

In the second case, the variable is the caadr of the expression
(the name of the function)

The value in this case is turned into a lambda expression.

(cdadr exp) is the list of parameters.

(cddr exp) is the body.

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing Lambda Expressions

(define (lambda? exp) (tagged-list? exp ’lambda))

(define (lambda-parameters exp) (cadr exp))

(define (lambda-body exp) (cddr exp))

(define (make-lambda parameters body)

(cons ’lambda (cons parameters body)))

Notice that the list must have at least one other element (except
the tag lambda).

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing If Statements

(define (if? exp) (tagged-list? exp ’if))

(define (if-predicate exp) (cadr exp))

(define (if-consequent exp) (caddr exp))

(define (if-alternative exp)

(if (not (null? (cdddr exp)))

(cadddr exp)

#f))

(define (make-if predicate consequent alternative)

(list ’if predicate consequent alternative))

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing Sequences

(define (begin? exp) (tagged-list? exp ’begin))

(define (begin-actions exp) (cdr exp))

(define (last-exp? seq) (null? (cdr seq)))

(define (first-exp seq) (car seq))

(define (rest-exps seq) (cdr seq))

(define (sequence->exp seq)

(cond ((null? seq) seq)

((last-exp? seq) (first-exp seq))

(else (make-begin seq))))

(define (make-begin seq) (cons ’begin seq))

Nurit Haspel CS450 - Structure of Higher Level Languages



User Defined Procedures

Procedure applications – any compound expression that is not one
of the above expression types.

(define (application? exp) (pair? exp))

(define (operator exp) (car exp))

(define (operands exp) (cdr exp))

(define (no-operands? ops) (null? ops))

(define (first-operand ops) (car ops))

(define (rest-operands ops) (cdr ops))

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing cond

Cond is syntactically transformed into a nest of if expressions.

(define (cond? exp) (tagged-list? exp ’cond))

(define (cond-clauses exp) (cdr exp))

(define (cond-else-clause? clause)

(eq? (cond-predicate clause) ’else))

(define (cond-predicate clause) (car clause))

(define (cond-actions clause) (cdr clause))

(define (cond->if exp)

(expand-clauses (cond-clauses exp)))

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing cond (Cont.)

(define (expand-clauses clauses)

(if (null? clauses)

#f ; no else clause -- return #f

(let ((first (car clauses))

(rest (cdr clauses)))

(if (cond-else-clause? first)

(if (null? rest)

(sequence->exp (cond-actions first))

(error "ELSE clause isn’t last -- COND->IF "

clauses))

(make-if (cond-predicate first)

(sequence->exp (cond-actions first))

(expand-clauses rest))))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Truth Values and Procedure Objects

(define (true? x)

(not (eq? x #f)))

(define (false? x)

(eq? x #f))

;;; Procedures

(define (make-procedure parameters body env)

(list ’procedure parameters body env))

(define (user-defined-procedure? p)

(tagged-list? p ’procedure))

(define (procedure-parameters p) (cadr p))

(define (procedure-body p) (caddr p))

(define (procedure-environment p) (cadddr p))

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing Environments

An environment is a list of frames.

The enclosing environment is the cdr of the current
environment.

Each frame is represented as a pair of lists:
1 a list of the variables bound in that frame, and
2 a list of the associated values.

For HW6 it is crucial to understand how environments are
represented.

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing Environments

(define (enclosing-environment env) (cdr env))

(define (first-frame env) (car env))

(define the-empty-environment ’())

(define (make-frame variables values)

(cons variables values))

(define (frame-variables frame) (car frame))

(define (frame-values frame) (cdr frame))

(define (add-binding-to-frame! var val frame)

(set-car! frame (cons var (car frame)))

(set-cdr! frame (cons val (cdr frame))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Extending an Environment

Creating a new frame with a set of variables and values.

Making the base environment the enclosing environment of
the new frame.

(define (xtend-environment vars vals base-env)

(if (= (length vars) (length vals))

(cons (make-frame vars vals) base-env)

(if (< (length vars) (length vals))

(error "Too many arguments supplied " vars vals)

(error "Too few arguments supplied " vars vals))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Looking up a Variable’s Value

Scan current frame, if not found – go to the enclosing environment.

(define (lookup-variable-value var env)

(define (env-loop env)

(define (scan vars vals)

(cond ((null? vars)

(env-loop (enclosing-environment env)))

((eq? var (car vars))

(car vals))

(else (scan (cdr vars) (cdr vals)))))

(if (eq? env the-empty-environment)

(error "Unbound variable " var)

(let ((frame (first-frame env)))

(scan (frame-variables frame)

(frame-values frame)))))

(env-loop env))

Nurit Haspel CS450 - Structure of Higher Level Languages



Set a Variable’s Value

Change value first time it’s found.

(define (set-variable-value! var val env)

(define (env-loop env)

(define (scan vars vals)

(cond ((null? vars)

(env-loop (enclosing-environment env)))

((eq? var (car vars))

(set-car! vals val))

(else (scan (cdr vars) (cdr vals)))))

(if (eq? env the-empty-environment)

(error "Unbound variable -- SET! " var)

(let ((frame (first-frame env)))

(scan (frame-variables frame)

(frame-values frame)))))

(env-loop env))

Nurit Haspel CS450 - Structure of Higher Level Languages



Defining a Variable’s Value

Add a binding to current frame, or change value if exists already.

(define (define-variable! var val env)

(let ((frame (first-frame env)))

(define (scan vars vals)

(cond ((null? vars)

(add-binding-to-frame! var val frame))

((eq? var (car vars))

(set-car! vals val))

(else (scan (cdr vars) (cdr vals)))))

(scan (frame-variables frame)

(frame-values frame))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Initial Environment Setup

The global environment starts up as containing primitive
procedures only.

In HW6 you will need to modify that, and separate the
primitive procedure installation from the initial setup.

In the current setup there are only four primitive procedures
installed.

Think what it means for other primitive procedures... (hint for
HW6).

Nurit Haspel CS450 - Structure of Higher Level Languages



Initial Environment Setup

(define (setup-environment)

(let ((initial-env

(xtend-environment (primitive-procedure-names)

(primitive-procedure-objects)

the-empty-environment)))

initial-env))

(define (primitive-procedure? proc)

(tagged-list? proc ’primitive))

(define (primitive-implementation proc) (cadr proc))

(define primitive-procedures

(list (list ’car car)

(list ’cdr cdr)

(list ’cons cons)

(list ’null? null?)

;; more primitives

))
Nurit Haspel CS450 - Structure of Higher Level Languages



Initial Environment Setup

(define (primitive-procedure-names)

(map car

primitive-procedures))

(define (primitive-procedure-objects)

(map (lambda (proc) (list ’primitive (cadr proc)))

primitive-procedures))

;;; Here is where we rely on the underlying Scheme

;;; implementation to know how to apply

;;; a primitive procedure.

(define (apply-primitive-procedure proc args)

(apply (primitive-implementation proc) args))

Nurit Haspel CS450 - Structure of Higher Level Languages



The Main Driver Loop

read returns an internal representation of the next expression.

It does not evaluate anything.

xeval does the actual evaluation.

(define input-prompt "s450==> ")

(define (s450)

(prompt-for-input input-prompt)

(let ((input (read)))

(let ((output (xeval input the-global-environment)))

(user-print output)))

(s450))

(define (prompt-for-input string)

(newline) (newline) (display string))

Nurit Haspel CS450 - Structure of Higher Level Languages



The Main Driver Loop

(define (user-print object)

(if (user-defined-procedure? object)

(display (list ’user-defined-procedure

(procedure-parameters object)

(procedure-body object)

’<procedure-env>))

(display object)))

(define the-global-environment (setup-environment))

(display "... loaded the metacircular evaluator.

(s450) runs it.")

(newline)

Nurit Haspel CS450 - Structure of Higher Level Languages


