CS450 - Structure of Higher Level Languages

Register Machines

November 23, 2020



Computing with Register Machines

@ We have seen how we can simulate a scheme evaluator using
scheme as the underlying language.

@ However, some questions about the lower-level behavior of the
language are still unanswered.

@ In order to provide a more complete description of the control
structure of the Lisp evaluator, we must work at a more
primitive level than Lisp itself.

@ Let us describe processes in terms of the step-by-step
operation of a traditional computer.

@ Such a computer, or register machine, sequentially executes
instructions that manipulate the contents of a fixed set of
storage elements called registers.

Nurit Haspel CS450 - Structure of Higher Level Languages



Computing with Register Machines

@ A typical register-machine instruction applies a primitive
operation to the contents of some registers and assigns the
result to another register.

@ Our descriptions of processes executed by register machines
will look very much like “machine-language” programs for
traditional computers.

@ However, we will examine several Lisp procedures and design a
specific register machine to execute each procedure.

@ Most of the primitive operations of our register machines are
very simple: an operation might add the numbers fetched
from two registers, storing the result into a third register.

@ In order to deal with lists we will also use the memory
operations car, cdr, and cons, which require an elaborate
storage-allocation mechanism.

Nurit Haspel CS450 - Structure of Higher Level Languages



Example — GCD

@ To design a register machine, we must design its data paths
(registers and operations) and the controller that sequences
these operations.

@ To illustrate the design of a simple register machine, let us
examine Euclid’'s Algorithm for the GCD of two integers.

@ Euclid’'s Algorithm can be carried out by an iterative process,
as specified by the following procedure:

(define (gcd a b)
(if (= b 0)
a
(gcd b (remainder a b))))

Nurit Haspel CS450 - Structure of Higher Level Languages



GCD Example

@ We must keep track of two numbers, a and b, so let us
assume that these numbers are stored in two registers with
those names.

@ We have to test whether the contents of register b is 0 and
compute the remainder of the contents of register a divided by
the contents of register b.

@ Assume for now that we have a primitive device that
computes remainders.

@ On each cycle of the algorithm, the contents of a must be
replaced by the contents of b, and the contents of b must be
replaced by the remainder of the old contents of a divided by
the old contents of b.

@ In our model we will assume that only one register can be
assigned a new value at each step.

@ To accomplish the replacements, our machine will use a third
“temporary” register t.

Nurit Haspel CS450 - Structure of Higher Level Languages



Data Path lllustration

Nurit Haspel CS450 - Structure of Higher Level Languages



Data Path lllustration

@ The registers are represented by rectangles.

@ Each way to assign a value to a register is indicated by an
arrow with an X behind the head, pointing from the source of
data to the register.

@ We can think of the X as a button that, when pushed, allows
the value at the source to “flow” into the designated register.

@ The source of data for a register can be another register (as in
the a < b assignment), an operation result (as in the t < r
assignment), or a constant (a built-in value that cannot be
changed, represented by a triangle).

@ An operation that computes a value from constants and the
contents of registers is represented in a data-path diagram by
a trapezoid containing a name for the operation.

Nurit Haspel CS450 - Structure of Higher Level Languages



Data Controller lllustration

Start

yes
= Done

no

t<r

b+t

Nurit Haspel CS450 - Structure of Higher Level Languages



Data Controller lllustration

@ In order for the data paths to actually compute GCDs, the
buttons must be pushed in the correct sequence.

@ The elements of the controller diagram indicate how the
data-path components should be operated.

@ The rectangular boxes identify data-path buttons to be
pushed, and the arrows describe the sequencing from one step
to the next.

@ The diamond represents a decision. One of the two
sequencing arrows will be followed, depending on the value of
the data-path test identified in the diamond.

@ Together, the data paths and the controller completely
describe a machine for computing GCDs.

@ We start the controller at the place marked start, after placing
numbers in registers a and b. When the controller reaches
done, the value of the GCD is in register a.

Nurit Haspel CS450 - Structure of Higher Level Languages



Register Machine Language

@ We need an adequate way to describe more complicated
procedures.

@ We will create a language that presents, in textual form, all
the information given by the data-path and controller
diagrams.

@ We will start with a notation that directly mirrors the
diagrams.

@ To describe a register, we give it a name and specify the
buttons that control assignment to it.

@ We give each of these buttons a name and specify the source
of the data that enters the register under the button's control.

@ To describe an operation, we give it a name and specify its
inputs.

Nurit Haspel CS450 - Structure of Higher Level Languages



Register Machine Language

@ We define the controller of a machine as a sequence of
instructions together with labels that identify entry points in
the sequence. An instruction is one of the following:

e The name of a data-path button to push to assign a value to a
register. (This corresponds to a box in the controller diagram.)

e A test instruction, that performs a specified test.

e A conditional branch to a location indicated by a controller
label, based on the result of the previous test. (The test and
branch correspond to a diamond in the controller diagram.)

o If the test is false, the controller should continue with the next
instruction in the sequence. Otherwise, the controller should
continue with the instruction after the label.

e An unconditional branch (goto instruction) naming a controller
label at which to continue execution.

@ We start at the beginning of the controller instruction
sequence and stop when execution reaches the end of the
sequence.

Nurit Haspel CS450 - Structure of Higher Level Languages



GCD Example

(data-paths
(registers
((name a)
(buttons ((name a<-b) (source (register b)))))
((name b)
(buttons ((name b<-t) (source (register t)))))

((name t)
(buttons ((name t<-r) (source (operation rem))))))

(operations
((name rem)

(inputs (register a) (register b)))
((name =)

(inputs (register b) (constant 0)))))

Nurit Haspel CS450 - Structure of Higher Level Languages



GCD Example

(controller
test-b
(test =)
(branch (label gcd-done))
(t<-r)
(a<-b)
(b<-t)
(goto (label test-Db))
gcd-done)

label

; test

conditional branch

; button push
; button push
; button push
; unconditional branch

label

Nurit Haspel CS450 - Structure of Higher Level Languages



GCD Example

@ This description forces us to go back and forth between the
controller and path.

@ We will leave only the controller and give informative names
to the buttons and actions.

@ Thus, the GCD machine is described as follows:

(controller

test-b
(test (op =) (reg b) (comst 0))
(branch (label gcd-done))
(assign t (op rem) (reg a) (reg b))
(assign a (reg b))
(assign b (reg t))
(goto (label test-Db))

gcd-done)

Nurit Haspel CS450 - Structure of Higher Level Languages



GCD Example

@ Let us modify the GCD machine so that we can type in the
input numbers and get the answer printed at our terminal.

@ Let us assume (as we do when we use read and display in
Scheme) that read and print are available as primitive
operations.

@ Read produces a value that can be stored in a register, but its
value depends on something that happens outside the
machine.

@ Print does not produce an output value to be stored in a
register. We will refer to this kind of operation as an action.

@ We will represent an action in a data-path diagram as a
trapezoid that contains the name of the action.

Nurit Haspel CS450 - Structure of Higher Level Languages



GCD Example

@ We also associate a button with the action. Pushing the
button makes the action happen.

@ To make a controller push an action button we use a new kind
of instruction called perform.

@ Thus, the action of printing the contents of register a is
represented in a controller sequence by the instruction
(perform (op print) (reg a))

@ We can modify the diagram, so that instead of having the
machine stop after printing the answer, we have made it start
over, so that it repeatedly reads a pair of numbers, computes
their GCD, and prints the result.

Nurit Haspel CS450 - Structure of Higher Level Languages



GCD Example

aerd b%rd

a+b

Nurit Haspel CS450 - Structure of Higher Level Languages



GCD Example

(controller

gcd-loop
(assign a (op read))
(assign b (op read))

test-b
(test (op =) (reg b) (const 0))
(branch (label gcd-done))
(assign t (op rem) (reg a) (reg b))
(assign a (reg b))
(assign b (reg t))
(goto (label test-b))

gcd-done
(perform (op print) (reg a))
(goto (label gcd-loop)))

Nurit Haspel CS450 - Structure of Higher Level Languages



Using Stacks to Implement Recursion

@ We can implement iterative processes by specifying a register
machine that has a register corresponding to each state
variable of the process.

@ The machine repeatedly executes a controller loop, changing
the contents of the registers, until some termination condition
is satisfied.

@ At each point in the controller sequence, the state of the
machine is completely determined by the contents of the
registers (the values of the state variables).

@ Implementing recursive processes, however, requires an
additional mechanism.

@ See for example the recursive factorial function:

define (factorial n)
(if (=n 1)
1
(x (factorial (- n 1)) n)))

Nurit Haspel CS450 - Structure of Higher Level Languages



Using Stacks to Implement Recursion

@ The value obtained for (n - 1)! must be multiplied by n to get
the final answer.

@ We need the values from previous calls to compute the result.

@ We would need "nested” instances of machines inside
machines...

@ However, only one instance is "active” at any given moment.

@ When the machine encounters a recursive subproblem, it can
suspend work on the main problem, reuse the same physical
parts to work on the subproblem, then continue the suspended
computation.

@ In the mean time, the values we save must be restored in
reverse order of which they were saved, since in a nest of

recursions the last subproblem to be entered is the first to be
finished.

@ This dictates the use of a stack.

Nurit Haspel CS450 - Structure of Higher Level Languages



Using Stacks to Implement Recursion

@ We can extend the register-machine language to include a
stack by adding two kinds of instructions:

@ Values are placed on the stack using a save instruction and
restored from the stack using a restore instruction.

@ After a sequence of values has been saved on the stack, a
sequence of restores will retrieve these values in reverse order.

@ In particular, the factorial machine has a stack and three
registers, called n, val, and continue.

@ The continue register transfers to the part of the sequence
that solves a subproblem and then continue where it left off
on the main problem.

@ We can thus make a factorial subroutine that returns to the
entry point stored in the continue register.

Nurit Haspel CS450 - Structure of Higher Level Languages



Controller for Recursive Factorial

controller

; set up final return address
(assign continue (label fact-done))

fact-loop
(test (op =) (reg n) (comst 1))
(branch (label base-case))
;; Set up for the recursive call by
;5 saving n and continue.
;; Set up continue so that the
;; computation will continue
;; at after-fact when the subroutine returns.
(save continue)
(save n)
(assign n (op -) (reg n) (comst 1))
(assign continue (label after-fact))
(goto (label fact-loop))

Nurit Haspel CS450 - Structure of Higher Level Languages



Controller for Recursive Factorial (Cont.)

after-fact

(restore n)

(restore continue)

; val now contains n(n - 1)!

(assign val (op *) (reg n) (reg val))

; return to caller

(goto (reg continue))
base-case
; base case: 1! =1

(assign val (const 1))

; return to caller

(goto (reg continue))
fact-done)

Nurit Haspel CS450 - Structure of Higher Level Languages



Controller for Recursive Factorial

val n | CX stack

o — continue

after-fact fact-done

Nurit Haspel CS450 - Structure of Higher Level Languages



Instruction Summary

(assign <register-name> (reg <register-name>))
(assign <register-name> (const <constant-value>))
(assign <register-name> (op <operation-name>)

<inputl> ... <inputn>)
(perform (op <operation-name>) <inputl> ... <inputn>)
(test (op <operation-name>) <inputl> ... <inputn>)

(branch (label <label-name>))
(goto (label <label-name>))

(assign <register-name> (label <label-name>))
(goto (reg <register-name>))

(save <register-name>)
(restore <register-name>)

Nurit Haspel CS450 - Structure of Higher Level Languages



The Register Machine Simulator

@ We must test the machines we design to see if they perform
as expected.

@ We will construct a simulator for machines described in the
register-machine language.

@ The simulator is a Scheme program with four interface
procedures.

@ The first uses a description of a register machine to construct
a model of the machine and the other three allow us to
simulate the machine by manipulating the model.

Nurit Haspel CS450 - Structure of Higher Level Languages



The Register Machine Simulator

(make-machine <register-names> <operations> <controller>)

constructs and returns a model of the machine with the given
registers, operations, and controller.

(set-register-contents! <machine-model> <register-name>
<value>)

stores a value in a simulated register in the given machine.
(get-register-contents <machine-model> <register-name>)
returns the contents of a simulated register in the given machine.
(start <machine-model>)

simulates the execution of the given machine.

Nurit Haspel CS450 - Structure of Higher Level Languages



The Register Machine Simulator — GCD Example

(define gcd-machine

(make-machine

’(a b t)

(1ist (list ’rem remainder) (list ’= =))

> (test-b
(test (op =) (reg b) (comnst 0))
(branch (label gcd-done))
(assign t (op rem) (reg a) (reg b))
(assign a (reg b))
(assign b (reg t))
(goto (label test-b))

gcd-done)))

Nurit Haspel CS450 - Structure of Higher Level Languages



The Register Machine Simulator — GCD Example

@ The first argument is a list of register names.

@ The next argument is a table (a list of two-element lists) that
pairs each operation name with its Scheme implementation.

@ The last argument specifies the controller as a list of labels
and machine instructions.

@ To compute GCDs with this machine, we set the input
registers, start the machine, and examine the result when the
simulation terminates:

(set-register-contents! gcd-machine ’a 206)
done

(set-register-contents! gcd-machine ’b 40)
done

(start gcd-machine)

done

(get-register-contents gcd-machine ’a)

2

Nurit Haspel CS450 - Structure of Higher Level Languages



The Machine Model

@ The machine model is represented using message-passing.

@ The procedure make-new-machine constructs the parts of
the machine model that are common to all register machines.

@ It's essentially a container for some registers and a stack, with
an execution mechanism that processes the controller
instructions one by one.

@ The basic model is then extended to include the specific
machine by allocating the registers, installing the operations
and installing the instructions.

@ The assembler transforms the controller list into instructions.

@ The returned value is the machine itself.

Nurit Haspel CS450 - Structure of Higher Level Languages



The Machine Model

(define (make-machine register-names ops controller-text)

(let ((machine (make-new-machine)))

(for-each (lambda (register-name)

((machine ’allocate-register) register-name))
register-names)
((machine ’install-operations) ops)
((machine ’install-instruction-sequence)
(assemble controller-text machine))
machine))

Nurit Haspel CS450 - Structure of Higher Level Languages



The Registers

Registers are a function with a local state.

define (make-register name)
(let ((contents ’*unassigned*))
(define (dispatch message)
(cond ((eq? message ’get) contents)

((eq? message ’set)
(lambda (value) (set! contents value)))
(else
(error "Unknown request -- REGISTER" message))))

dispatch))

(define (get-contents register)
(register ’get))

(define (set-contents! register value)
((register ’set) value))

Nurit Haspel CS450 - Structure of Higher Level Languages



The Stack

(define (make-stack)
(et ((s 70N
(define (push x)
(set! s (coms x s)))
(define (pop)
(if (null? s)
(error "Empty stack -- POP")
(let ((top (car s)))
(set! s (cdr s)) top)))
(define (initialize)
(set! s >()) ’done)
(define (dispatch message)
(cond ((eq? message ’push) push)
((eq? message ’pop) (pop))
((eq? message ’initialize) (initialize))
(else (error "Unknown request -- STACK"
message))))
dispatch))

Nurit Haspel CS450 - Structure of Higher Level Languages



The Machine Itself

@ The make-new-machine procedure constructs an object with
a stack, an initially empty instruction sequence, a list of
operations, and a register table that initially contains two
registers, named flag and pc (for “program counter”).

@ The flag register is used to control branching in the
simulated machine.

@ Test instructions set the contents of flag to the result of the
test (true or false), and branches decide whether or not to
branch by examining the contents of flag.

@ The pc register determines the sequencing of instructions as
the machine runs, implemented by the internal procedure
execute.

@ Each machine instruction is a data structure that includes a
procedure of no arguments and calling this procedure
simulates executing the instruction.

Nurit Haspel CS450 - Structure of Higher Level Languages



The Machine Itself

@ pc points to the place in the instruction sequence beginning
with the next instruction to be executed.

@ Execute gets that instruction, executes it by calling the
instruction execution procedure, and repeats until pc points to
the end of the instruction sequence.

@ Each instruction execution procedure modifies pc to indicate
the next instruction to be executed.

@ Branch and goto instructions change pc to point to the new
destination. All other instructions simply advance pc to the
next instruction in the sequence.

@ Each call to execute calls execute again, but this does not
produce an infinite loop because we stop when pc runs out,

Nurit Haspel CS450 - Structure of Higher Level Languages



The Assembler

@ The assembler transforms the sequence of controller
expressions for a machine into a corresponding list of machine
instructions, each with its execution procedure.

@ Then the assembler augments the instruction list by inserting
the execution procedure for each instruction.

@ The assemble procedure is the main entry to the assembler.
It produces the instruction sequence to be stored in the model.

@ Assemble calls extract-labels to build the initial instruction
list and label table from the supplied controller text.

@ The second argument to extract-labels is a procedure to be
called to process these results.

@ This procedure uses update-insts! to generate the
instruction execution procedures and insert them into the
instruction list, and returns the modified list.

Nurit Haspel CS450 - Structure of Higher Level Languages



The Assembler Code

(define (assemble controller-text machine)
(extract-labels controller-text
(lambda (insts labels)
(update-insts! insts labels machine)
insts)))

Nurit Haspel CS450 - Structure of Higher Level Languages



extract-labels Code

(define (extract-labels text receive)
(if (null? text)
(receive () ()
(extract-labels (cdr text)
(lambda (insts labels)
(let ((next-inst (car text)))
(if (symbol? next-inst)
(receive insts
(cons (make-label-entry next-inst

insts)
labels))
(receive (cons (make-instruction next-inst)
insts)
labels)))))))

Nurit Haspel CS450 - Structure of Higher Level Languages



update-insts! Code

Update-insts! modifies the instruction list, which initially contains
only the text of the instructions, to include the corresponding
execution procedures:

(define (update-insts! insts labels machine)
(let ((pc (get-register machine ’pc))
(flag (get-register machine ’flag))
(stack (machine ’stack))
(ops (machine ’operations)))
(for-each
(lambda (inst)
(set-instruction-execution-proc!
inst
(make-execution-procedure
(instruction-text inst) labels machine
pc flag stack ops)))
insts)))

Nurit Haspel CS450 - Structure of Higher Level Languages



make-instruction

@ Here we pair the instruction text with the corresponding
execution procedure.

@ The execution procedure is not yet available when
extract-labels constructs the instruction, and is inserted
later by update-insts!.

(define (make-instruction text)
(cons text >()))
(define (instruction-text inst)
(car inst))
(define (instruction-execution-proc inst)
(cdr inst))
(define (set-instruction-execution-proc! inst proc)
(set-cdr! inst proc))

Nurit Haspel CS450 - Structure of Higher Level Languages



make-instruction

@ The assembler calls make-execution-procedure to generate the
execution procedure for an instruction.

@ This procedure dispatches on the type of instruction to
generate the appropriate execution procedure.

@ For each type of instruction in the register-machine language,
there is a generator that builds an appropriate execution
procedure.

@ The details of these procedures determine both the syntax
and meaning of the individual instructions in the
register-machine language.

@ We use data abstraction to isolate the detailed syntax of
register-machine expressions from the general execution
mechanism.

Nurit Haspel CS450 - Structure of Higher Level Languages



make-instruction

(define (make-execution-procedure inst labels machine
pc flag stack ops)
(cond ((eq? (car inst) ’assign)
(make-assign inst machine labels ops pc))
((eq? (car inst) ’test)
(make-test inst machine labels ops flag pc))
((eq? (car inst) ’branch)
(make-branch inst machine labels flag pc))
((eq? (car inst) ’goto)
(make-goto inst machine labels pc))
((eq? (car inst) ’save)
(make-save inst machine stack pc))
((eq? (car inst) ’restore)
(make-restore inst machine stack pc))
((eq? (car inst) ’perform)
(make-perform inst machine labels ops pc))
(else (error "Unknown instruction type -- ASSEMBLE"
inst))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Assign instruction

(define (make-assign inst machine labels operations pc)
(let ((target
(get-register machine (assign-reg-name inst)))
(value-exp (assign-value-exp inst)))
(let ((value-proc
(if (operation-exp? value-exp)
(make-operation-exp
value-exp machine labels operations)
(make-primitive-exp
(car value-exp) machine labels))))
(lambda O ; execution procedure for assign
(set-contents! target (value-proc))
(advance-pc pc)))))

Nurit Haspel CS450 - Structure of Higher Level Languages



test instruction

@ It extracts the expression that specifies the condition to be
tested and generates an execution procedure for it.

@ At simulation time, the procedure for the condition is called,
the result is assigned to the flag register, and the pc is
advanced.

(define (make-test inst machine labels operations flag pc)
(let ((condition (test-condition inst)))
(if (operation-exp? condition)
(let ((condition-proc
(make-operation-exp
condition machine labels operations)))
(lambda ()
(set-contents! flag (condition-proc))
(advance-pc pc)))
(error "Bad TEST instruction -- ASSEMBLE" inst))))

Nurit Haspel CS450 - Structure of Higher Level Languages



branch instruction

@ We check the contents of the flag register and either set the
contents of the pc to the branch destination (if the branch is
taken) or else just advance the pc (if the branch is not taken).

@ Notice that the indicated destination in a branch instruction
must be a label, and the make-branch procedure enforces this.

@ Notice that the label is looked up at assembly time, not each
time the branch instruction is simulated.

(define (make-branch inst machine labels flag pc)
(let ((dest (branch-dest inst)))
(if (label-exp? dest)
(let ((insts
(lookup-label labels (label-exp-label dest))))
(lambda (O
(if (get-contents flag)
(set-contents! pc insts)
(advance-pc pc))))
(error "Bad BRANCH instruction -- ASSEMBLE" inst))))

Nurit Haspel CS450 - Structure of Higher Level Languages



goto instruction

Similar to a branch, except that the destination may be either a
label or as a register, and there is no condition.

(define (make-goto inst machine labels pc)
(let ((dest (goto-dest inst)))
(cond ((label-exp? dest)
(let ((insts
(lookup-label labels
(label-exp-label dest))))
(lambda () (set-contents! pc insts))))
((register-exp? dest)
(let ((reg
(get-register machine
(register-exp-reg dest))))
(lambda ()
(set-contents! pc (get-contents reg)))))
(else (error "Bad GOTO instruction -- ASSEMBLE"
inst)))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Stack save and restore instructions

(define (make-save inst machine stack pc)
(let ((reg (get-register machine
(stack-inst-reg-name inst))))
(lambda O
(push stack (get-contents reg))
(advance-pc pc))))
(define (make-restore inst machine stack pc)
(let ((reg (get-register machine
(stack-inst-reg-name inst))))
(lambda QO
(set-contents! reg (pop stack))
(advance-pc pc))))
(define (stack-inst-reg-name stack-instruction)
(cadr stack-instruction))

Nurit Haspel CS450 - Structure of Higher Level Languages



make-perform generates an execution procedure for the action to
be performed.

(define (make-perform inst machine labels operations pc)
(let ((action (perform-action inst)))
(if (operation-exp? action)
(let ((action-proc
(make-operation-exp
action machine labels operations)))
(lambda ()
(action-proc)
(advance-pc pc)))
(error "Bad PERFORM instruction -- ASSEMBLE" inst))))
(define (perform-action inst) (cdr inst))

Nurit Haspel CS450 - Structure of Higher Level Languages



Execution procedures for subexpressions

The value of a reg, label, or const expression may be needed for
assignment to a register or for input to an operation

(define (make-primitive-exp exp machine labels)
(cond ((constant-exp? exp)
(let ((c (constant-exp-value exp)))
(lambda () <)))
((label-exp? exp)
(let ((insts (lookup-label labels
(label-exp-label exp))))
(lambda () insts)))
((register-exp? exp)
(let ((r (get-register machine
(register-exp-reg exp))))
(lambda () (get-contents r))))
(else (error
"Unknown expression type -- ASSEMBLE" exp))))

Nurit Haspel CS450 - Structure of Higher Level Languages



Making an operation expression

@ Assign, perform, and test instructions may include the
application of a machine operation to some operands.

@ The following procedure produces an execution procedure for
an “operation expression” — a list containing the operation
and operand expressions from the instruction

(define (make-operation-exp exp machine labels operations)

(let ((op (lookup-prim
(operation-exp-op exp) operations))

(aprocs

(map (lambda (e)

(make-primitive-exp e machine labels))
(operation-exp-operands exp))))
(lambda ()
(apply op (map (lambda (p) (p)) aprocs)))))

Nurit Haspel CS450 - Structure of Higher Level Languages



