s450.scm
~/umb/cs450/hw6/ORIG/

1
10/18/09

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1
1

1

1

1

file: s450.scm

Metacircular evaluator from chapter 4 of STRUCTURE AND
INTERPRETATION OF COMPUTER PROGRAMS (2nd edition)

Modified by kwn, 3/4/97
Modified and commented by Carl Offner, 10/21/98 —— 10/12/04

This code is the code for the metacircular evaluator as it appears
in the textbook in sections 4.1.1-4.1.4, with the following
changes:

1. It uses #f and #t, not false and true, to be Scheme-conformant.

2. Some function names were changed to avoid conflict with the
underlying Scheme:

eval => xeval
apply => xapply
extend—environment => xtend-environment
3. The driver-loop is called s450.
4. The booleans (#t and #f) are classified as self-evaluating.
5. These modifications make it look more like UMB Scheme:
The define special form evaluates to (i.e., "returns") the

variable being defined.
No prefix is printed before an output value.

6. | changed "compound-procedure" to "user—defined-procedure”.

1

xeval and xapply —— the kernel of the metacircular evaluator

R R R R R R R R R R R e R R R R R e R R LR R R R R LReRE]

(define (xeval exp env)
(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text—of—quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval—-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)
(make—-procedure (lambda—parameters exp)

(lambda-body exp)

env))
((begin? exp)
(eval-sequence (begin—actions exp) env))
((cond? exp) (xeval (cond->if exp) env))
((application? exp)
(xapply (xeval (operator exp) env)

(list-of-values (operands exp) env)))

(else
(error "Unknown expression type —— XEVAL " exp))))

(define (xapply procedure arguments)
(cond ((primitive—procedure? procedure)
(apply—primitive—procedure procedure arguments))
((user—defined-procedure? procedure)
(eval-sequence
(procedure—body procedure)
(xtend-environment
(procedure—parameters procedure)
arguments
(procedure—environment procedure))))
(else
(error
"Unknown procedure type —— XAPPLY " procedure))))

;;» Handling procedure arguments

(define (list-of-values exps env)
(if (no-operands? exps)

(cons (xeval (first-operand exps) env)
(list-of-values (rest-operands exps) env))))

;» These functions, called from xeval, do the work of evaluating some
;i of the special forms:

(define (eval-if expenv)

(if (true? (xeval (if-predicate exp) env))
(xeval (if-consequent exp) env)
(xeval (if-alternative exp) env)))

(define (eval-sequence exps env)
(cond ((last-exp? exps) (xeval (first-exp exps) env))
(else (xeval (first-exp exps) env)
(eval-sequence (rest-exps exps) env))))

(define (eval-assignment exp env)
(let ((name (assignment-variable exp)))
(set-variable-value! name
(xeval (assignment-value exp) env)

env)
name)) ;. A& Sreturn 'ok
(define (eval-definition exp env)

(let ((name (definition—variable exp)))
(define-variable! name
(xeval (definition—value exp) env)
env)
name)) ;v A& Sreturn 'ok

s450.scm
~/umb/cs450/hw6/ORIG/

2
10/18/09

R R R R R R R R R R R R R R R e R R R R LR R e R R LR R R EEIRLRLRE]

1

Representing expressions

EER R R R R R R R R RERLRRRRREE]

(Not characters though; they don’t seem to work out as well
because of an interaction with read and display.)

(define (self-evaluating? exp)
(or (number? exp)
(string? exp)
(boolean? exp)
)
variables —— represented as symbols
(define (variable? exp) (symbol? exp))
quote —— represented as (quote <text—of—quotation>)

(define (quoted? exp)
(tagged-list? exp 'quote))

(define (text-of-quotation exp) (cadr exp))
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
#f))
;. assignment —— represented as (set! <var> <value>)

(define (assignment? exp)
(tagged-list? exp 'set!))

(define (assignment-variable exp) (cadr exp))
(define (assignment-value exp) (caddr exp))
;s definitions —— represented as

(define <var> <value>)
or

1

1

The second form is immediately turned into the equivalent lambda
expression.

(define (' definition? exp)
(tagged-list? exp 'define))

(define (definition—variable exp)
(if (symbol? (cadr exp))

(cadr exp)

(caadr exp)))

(define (definition-value exp)
(if (symbol? (cadr exp))
(caddr exp)
(make-lambda (cdadr exp)
(cddr exp))))

lambda expressions —— represented as (lambda ...)

Numbers, strings, and booleans are all represented as themselves.

(define (<var> <parameter_1> <parameter_2> ... <parameter_n>) <body>)

That is, any list starting with lambda. The list must have at
; least one other element, or an error will be generated.
(define (lambda? exp) (tagged-list? exp 'lambda))

(define (lambda-parameters exp) (cadr exp))
(define (lambda—body exp) (cddr exp))

(define (make-lambda parameters body)
(cons 'lambda (cons parameters body)))

conditionals —- (if <predicate> <consequent> <alternative>?)
(define (if? exp) (tagged-list? exp 'if))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)

(if (not (null? (cdddr exp)))
(cadddr exp)
#f))

(define (make-if predicate consequent alternative)
(list "if predicate consequent alternative))
sequences —— (begin <list of expressions>)
(define (begin? exp) (tagged-list? exp 'begin))
(define (begin-actions exp) (cdr exp))
(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))
(define (rest-exps seq) (cdr seq))
(define (sequence—>exp seq)
(cond ((null? seq) seq)
((last—exp? seq) (first—exp seq))
(else (make-begin seq))))
(define (make-begin seq) (cons 'begin seq))

procedure applications —— any compound expression that is not one
;;» of the above expression types.

(define (application? exp) (pair? exp))
(define (operator exp) (car exp))
(define (operands exp) (cdr exp))
(define (no—operands? ops) (null? ops))
(define (first-operand ops) (car ops))
(define (rest-operands ops) (cdr ops))

Derived expressions —— the only one we include initially is cond,
which is a special form that is syntactically transformed into a
;i nest of if expressions.

(define (cond? exp) (tagged-list? exp 'cond))

s450.scm
~/umb/cs450/hw6/ORIG/

(define (cond-clauses exp) (cdr exp))

(define (cond-else-clause? clause)
(eq? (cond-predicate clause) 'else))

(define (cond—-predicate clause) (car clause))
(define (cond-actions clause) (cdr clause))

(define (cond—>if exp)
(expand-clauses (cond-clauses exp)))

(define (expand-clauses clauses)
(if (null? clauses)
#f no else clause —— return #f
(let ((first (car clauses))
(rest (cdr clauses)))
(if (cond-else-clause? first)
(if (null? rest)
(sequence—>exp (cond-actions first))
(error "ELSE clause isn’t last -—— COND—>IF "
clauses))
(make-if (cond—predicate first)
(sequence—>exp (cond—actions first))
(expand-clauses rest))))))

IR R R R R R R R R RR R R R R R LR R R R R R R R LR LR R R R ERRLRLRLE]

Truth values and procedure objects

R R R R R R R R R R R R R R R LR R R R R R R R LR R LR R R R EIRLRLRLE]

Truth values

(define (true? x)
(not (eq? x #f)))

(define (false? x)
(eq? x #f))
Procedures

(define (make-procedure parameters body env)
(list 'procedure parameters body env))

(define (user—defined—procedure? p)
(tagged-list? p 'procedure))

(define (procedure—parameters p) (cadr p))
(define (procedure-body p) (caddr p))
(define (. procedure—environment p) (cadddr p))

R R R R R R R R R LR R R R R e R R R R R LR R LR R R EEIRLRLRLE]
1

Representing environments

R R R R R R R RN R R R e R R R R R R e R R LR R R R R LRE]

;v Anenvironment is a list of frames.

(define (enclosing—environment env) (cdr env))
(define (first-frame env) (car env))

(define the-empty—environment 0)

Each frame is represented as a pair of lists:

1. alist of the variables bound in that frame, and
2. alist of the associated values.

1

(define (make—frame variables values)
(cons variables values))

(define (frame-variables frame) (car frame))
(define (frame-values frame) (cdr frame))

(define (add-binding-to-frame! var val frame)
(set—car! frame (cons var (car frame)))
(set—cdr! frame (cons val (cdr frame))))

Extending an environment

(define (xtend—environment vars vals base-env)
(if (= (length vars) (length vals))
(cons (make—frame vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many arguments supplied " vars vals)
(error "Too few arguments supplied " vars vals))))

Looking up a variable in an environment

(define (lookup-variable-value var env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing—environment env)))
((eq? var (car vars))
(car vals))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty—environment)
(error "Unbound variable " var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))

s450.scm
~/umb/cs450/hw6/ORIG/

4
10/18/09

Setting a variable to a new value in a specified environment.
Note that it is an error if the variable is not already present
(i.e., previously defined) in that environment.

1

1

(define (set-variable-value! var val env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing—environment env)))
((eq? var (car vars))
(set—car! vals val))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty—environment)
(error "Unbound variable —— SET! " var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))

Defining a (possibly new) variable. First see if the variable
already exists. If it does, just change its value to the new
value. If it does not, define the new variable in the current
frame.

1

1

(define (define—variable! var val env)
(let ((frame (first-frame env)))
(define (scan vars vals)
(cond ((null? vars)
(add-binding—to—frame! var val frame))
((eqg? var (car vars))
(set—car! vals val))
else (scan (cdr vars) (cdr vals)))))
(scan (frame-variables frame)
(frame-values frame))))

The initial environment

R R R R R R R RN R R R e R R R R R R e R R LR R R R R LRE]

This is initialization code that is executed once, when the the
interpreter is invoked.

1

(define (setup—environment)
(let ((initial-env
(xtend—environment (primitive—procedure—-names)
(primitive—procedure-objects)
the-empty—environment)))
initial-env))

Define the primitive procedures

(define (primitive-procedure? proc)
(tagged-list? proc 'primitive))

(define (primitive—implementation proc) (cadr proc))

(define primitive—procedures
(list (list 'car car)
(list "cdr cdr)
(list 'cons cons)
(list 'null? null?)
more primitives

)
(define (' primitive—procedure-names)
(mapcar

primitive-procedures))

(define (primitive—procedure-objects
(map(lambda (proc) (list 'primitive (cadr proc)))
primitive—procedures))

;i» Here is where we rely on the underlying Scheme implementation to
i know how to apply a primitive procedure.

(define (apply—primitive—procedure proc args)
(apply (primitive—implementation proc) args))

s450.scm
~/umb/cs450/hw6/ORIG/

5
10/18/09

R R R R R R R R R R R R R R R e R R R R LR R e R R LR R R EEIRLRLRE]
1

The main driver loop

R R R R R R R R R R R e R R R R R e R R LR R R IR R LReRE]

Note that (read) returns an internal representation of the next
Scheme expression from the input stream. It does NOT evaluate
what is typed in —- it just parses it and returns an internal
representation. It is the job of the scheme evaluator to perform
the evaluation. In this case, our evaluator is called xeval.

1

(define input-prompt "s450==>")

(define (s450)
(prompt—for—input input-prompt)
(let ((input (read)))
(let ((output (xeval input the—global-environment)))
(user—print output)))
(s450))

(define (prompt—for-input string)
(newline) (newline) (display string))

Note that we would not want to try to print a representation of the
<procedure-env> below —- this would in general get us into an
infinite loop.

1

(define (user—print object)
(if (user-defined—procedure? object)
(display (list 'user—defined—procedure
(procedure—parameters object)
(procedure—body object)
'<procedure—env>))
(display object)))

Here we go: define the global environment and invite the
user to run the evaluator.

(define the—global-environment (setup—environment))

(display "... loaded the metacircular evaluator. (s450) runs it.")
(newline)

