
save_continuation.scm
~/umb/cs450/continuations/

1
10/28/08

;;; File: save_continuation.scm

;;; This is a simple example to show how
;;; call−with−current−continuation can be used to implement exception
;;; handling. The example is so trivial that it could be done more
;;; simply; the point is just to show how call/cc can be used.

;;; We will define a procedure (main_loop) which when invoked asks the
;;; user to input a number different from 0. If the user inputs the
;;; number 0 or anything other than a number, a message is generated
;;; explaining what the user did wrong, and the loop starts over. If
;;; the input is acceptable, the procedure echoes it and quits.

;;; Define the target symbol in the global environment. What it is
;;; defined to is immaterial, since it will be overwritten.

(define target ’())

;;; Define a procedure which needs to escape. Use the target to tell
;;; it where to escape to.

(define (f x)
 (cond ((= x 0)
 (display "0 entered; try again.")
 (newline)
 (target x)) ;;; the argument x will be ignored.
 (else
 (display "Success: ")
 (display x)
 (newline))
)
)

;;; Define the calling routine, which in turn defines the target.

(define (main_loop)
 (call/cc
 (lambda(here)
 (set! target here)))
 (display "Type a number different from 0: ")
 (let ((n (read)))

 ;; First check to make sure that a number was entered.
 (if (not (number? n))
 (begin
 (display n)
 (display " is not a number; try again.")
 (newline)
 (target n) ;;; the argument n will be ignored.
)
)

 ;; OK; a number was entered. Now call f to do the rest of the
 ;; processing.
 (f n)
)
)

;;; The continuation that is passed to "here" can’t really be expressed in
 ;;; simple Scheme. It would be pretty close to this, however (note that we
 ;;; still need to use an "escape" procedure named "exit"):

;; (lambda (val)
;; (display "Type a number different from 0: ")
;; (let ((n (read)))
;;
;; ;; First check to make sure that a number was entered.
;; (if (not (number? n))
;; (begin
;; (display n)
;; (display " is not a number; try again.")
;; (newline)
;; (target n) ;;; the argument n will be ignored.
;;)
;;)
;;
;; ;; OK; a number was entered. Now call f to do the rest of the
;; ;; processing.
;; (f n)
;;)
;; (exit) ;; well, escape to the top level!
;;)

