syntax.scm
~/umb/cs450/ch5.BASE/

1
12/25/10

i File: syntax.scm

This file contains procedures that are taken from the Chapter 4
interpreter. They are used in two contexts:

Itis loaded by

eceval-support.scm to provide implementations of additional
machine—primitive operators in the register machines of Chapter
5.

compiler.scm to support syntax analysis in the compiler itself.

R R R R R R R R RN R R R e R R R R R e R R LR R R R R LRLRE]

1

Representing expressions

R R R R R R R R R R R R R e R R R R R R R LR R R R R LReREE]

i Numbers, strings, and booleans are all represented as themselves.
(Not characters though; they don’t seem to work out as well
because of an interaction with read and display.)

(define (self-evaluating? exp)

(or (number? exp)
(string? exp)
(boolean? exp)
)
variables —— represented as symbols

(define (variable? exp) (symbol? exp))

quote —— represented as (quote <text—of—quotation>)

(define (quoted? exp)
(tagged-list? exp 'quote))

(define (text-of-quotation exp) (cadr exp))
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
#f))
5, assignment —— represented as (set! <var> <value>)

(define (assignment? exp)
(tagged-list? exp 'set!))

(define (assignment-variable exp) (cadr exp))
(define (assignment-value exp) (caddr exp))
;s definitions —— represented as

(define <var> <value>)
or

(define (<var> <parameter_1> <parameter_2> ... <parameter_n>) <body>)

The second form is immediately turned into the equivalent lambda
expression.

(define (' definition? exp)
(tagged-list? exp 'define))

(define (definition-variable exp)
(if (symbol? (cadr exp))

(cadr exp)

(caadr exp)))

(define (definition-value exp)
(if (symbol? (cadr exp))
(caddr exp)
(make-lambda (cdadr exp)
(cddr exp))))

lambda expressions —- represented as (lambda ...)
That is, any list starting with lambda. The list must have at
least one other element, or an error will be generated.
(define (lambda? exp) (tagged-list? exp 'lambda))

(define (lambda-parameters exp) (cadr exp))
(define (lambda—body exp) (cddr exp))

(define (make-lambda parameters body)
(cons 'lambda (cons parameters body)))

conditionals —- (if <predicate> <consequent> <alternative>?)
(define (if? exp) (tagged-list? exp 'if))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
(if (not (null? (cdddr exp)))
(cadddr exp)
'false))

**following needed only to implement COND as derived expression,
;v not needed by eceval machine in text. But used by compiler

(define (make-if predicate consequent alternative)
(list 'if predicate consequent alternative))

i sequences —— (begin <list of expressions>)

(define (begin? exp) (tagged-list? exp 'begin))
(define (begin—-actions exp) (cdr exp))
(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))

(define (rest-exps seq) (cdr seq))

(define (sequence—>exp seq)

(cond ((null? seq) seq)
((last-exp? seq) (first-exp seq))
(else (make-begin seq))))

(define (make-begin seq) (cons 'begin seq))

procedure applications —— any compound expression that is not one
;;; of the above expression types.

(define (application? exp) (pair? exp))

syntax.scm
~/umb/cs450/ch5.BASE/

2
12/25/10

(define
(define

operator exp) (car exp))
operands exp) (cdr exp))

(define first-operand ops) (car ops))

(
(
(define (no—operands? ops) (null? ops))
(
(define (rest-operands ops) (cdr ops))

Derived expressions —— the only one we include initially is cond,

which is a special form that is syntactically transformed into a
nest of if expressions.

1

(define (cond? exp) (tagged-list? exp 'cond))
(define (cond-clauses exp) (cdr exp))
(define (cond-else-clause? clause)

(eq? (cond-predicate clause) 'else))

(define (cond—predicate clause) (car clause))
(define (cond-actions clause) (cdr clause))

(define (cond—>if exp)
(expand-clauses (cond-clauses exp)))

(define (expand-clauses clauses)
(i (null? clauses)
false . no else clause
(let ((first (car clauses))
(rest (cdr clauses)))
(if (cond-else-clause? first)
(if (null? rest)
(sequence—>exp (cond—actions first))
(error "ELSE clause isn't last —— COND—>IF"
clauses))

(make-if (cond—predicate first)
(sequence—>exp (cond—actions first))
(expand-clauses rest))))))

end of Cond support

