
CS450 - Structure of Higher Level Languages

set-car!, set-cdr!, and building tables

October 21, 2020



When do we allocate memory?

The basic memory allocator in Scheme is cons.

The function list is really defined in terms of cons, so it
also allocates memory.

For example, suppose you start out like this:

(define x (list ’a ’b))

(define z1 (cons x x))

Then z1 evaluates to ((a b) a b).

Nurit Haspel CS450 - Structure of Higher Level Languages



How is This Represented?

(cons x x), where x is (list ’a ’b)

z1

x

b b

b b b

a b

Nurit Haspel CS450 - Structure of Higher Level Languages



How is This Represented?

On the other hand, suppose we evaluate the following Scheme
expression:

(define z2 (cons (list ’a ’b) (list ’a ’b)))

What is different here is that list is evaluated twice—that is, we
are allocating memory two times instead of once. As a result, we
will get the data structure represented here:

z2 b b b b

b b

b

b

a b

Nurit Haspel CS450 - Structure of Higher Level Languages



How is This Represented?

Note that the two lists have the same terminal nodes.

That’s because symbols like ’a and ’b, and also the empty
list, are guaranteed to be unique in Scheme’s memory.

Exercise:
If on the other hand, we defined

(define z3 (cons (list 2 3)(list 2 3)))

We would most likely get something else. Do you see why?

Nurit Haspel CS450 - Structure of Higher Level Languages



How is This Represented?

Note that we can’t distinguish z1 from z2 by just printing them
out:

==> z1

((a b) a b)

==> z2

((a b) a b)

Look at this, however:

==> (eq? z1 z2)

#f

==> (eqv? z1 z2)

#f

==> (equal? z1 z2)

#t

Nurit Haspel CS450 - Structure of Higher Level Languages



set-car! and set-cdr!

These two procedures are just pretty much what you think they
are. So for instance, if we have

(define aaa (cons 3 4))

then aaa will evaluate to (3 . 4). And if then we evaluate

(set-car! aaa 7)

then aaa will evaluate to (7 . 4). And so on.

Nurit Haspel CS450 - Structure of Higher Level Languages



A Straightforward Example

Here is a straightforward example, which is pretty typical of the
way these procedures are used: Suppose we start out by defining

(define x ’((a b) c d))

(define y ’(e f))

Here is what they look like in memory:

x b b b b

b b

b

b

a b

c d

y b b b

e f

Nurit Haspel CS450 - Structure of Higher Level Languages



A Straightforward Example

Now suppose we evaluate the expression

(set-car! x y)

x is now ((e f) c d).

x

y

b b b b

b b

b

b

e f

c d

Nurit Haspel CS450 - Structure of Higher Level Languages



A Trickier Example

Suppose we define (as the book does) the following procedure:

(define (set-to-wow! x)

(set-car! (car x) ’wow) x)

Then after evaluating

(set-to-wow! z1)

we will have

z1 ==> ((wow b) wow b)

while after evaluating

(set-to-wow! z2)

we will have

z2 ==> ((wow b) a b)

which shows that z1 and z2 really are different.
Nurit Haspel CS450 - Structure of Higher Level Languages



Representing a pair as a dispatch procedure

We can easily define set-car! and set-cdr! as message passing
procedures.

(define (cons x y)

(define (set-x! v) (set! x v))

(define (set-y! v) (set! y v))

(define (dispatch m)

(cond ((eq? m ’car) x)

((eq? m ’cdr) y)

((eq? m ’set-car!) set-x!)

((eq? m ’set-cdr!) set-y!)

(else (error "..."))))

dispatch)

Nurit Haspel CS450 - Structure of Higher Level Languages



Representing a pair as a dispatch procedure

(define (car z) (z ’car))

(define (cdr z) (z ’cdr))

(define (set-car! z new-value)

((z ’set-car!) new-value)

z)

(define (set-cdr! z new-value)

((z ’set-cdr!) new-value)

z)

Nurit Haspel CS450 - Structure of Higher Level Languages



Tables

Using these new functions, let us see how to construct tables.

We’ll consider both 1-dimensional and 2-dimensional tables;
they are both extremely useful, and this code is something you
will find useful in the programming assignments (as well as
any other Scheme code you end up writing).

See figures 3.22 and 3.23 in SICP.

Let us start with a 1-dimensional example

(define (lookup key table)

(let ((record (assoc key (cdr table))))

(if record

(cdr record)

#f)))

Nurit Haspel CS450 - Structure of Higher Level Languages



Tables

(define (assoc key records)

(cond ((null? records) #f)

((equal? key (caar records)) (car records))

(else (assoc key (cdr records)))))

(define (insert! key value table)

(let ((record (assoc key (cdr table))))

(if record

(set-cdr! record value)

(set-cdr! table

(cons (cons key value) (cdr table)))))

’ok) ;;; maybe val would be better than ’ok

(define (make-table)

(list ’*table*))

Nurit Haspel CS450 - Structure of Higher Level Languages



1D Table

Nurit Haspel CS450 - Structure of Higher Level Languages



A 2-Dimensional Example

(define (lookup key-1 key-2 table)

(let ((subtable (assoc key-1 (cdr table))))

(if subtable

(let ((record (assoc key-2 (cdr subtable))))

(if record

(cdr record)

#f))

#f)))

Nurit Haspel CS450 - Structure of Higher Level Languages



A 2-Dimensional Example

(define (insert! key-1 key-2 value table)

(let ((subtable (assoc key-1 (cdr table))))

(if subtable

(let ((record (assoc key-2 (cdr subtable))))

(if record

(set-cdr! record value)

(set-cdr! subtable

(cons (cons key-2 value)

(cdr subtable)))))

(set-cdr! table

(cons (list key-1

(cons key-2 value))

(cdr table)))))

’ok) ;;; maybe val would be better than ’ok

Nurit Haspel CS450 - Structure of Higher Level Languages



2D Table

Nurit Haspel CS450 - Structure of Higher Level Languages



A 2-dimensional table represented as a set of procedures
with internal state

This is one way of implementing put and get. put and get

were present from the early days of Lisp, but are not part of
standard Scheme.
If you really wanted them, however (and it’s not generally
recommend), this is how you could implement them.

(define (make-table)

(let ((local-table (list ’*table*)))

(define (lookup key-1 key-2)

(let ((subtable (assoc key-1 (cdr local-table))))

(if subtable

(let ((record (assoc key-2 (cdr subtable))))

(if record

(cdr record)

#f))

#f)))

Nurit Haspel CS450 - Structure of Higher Level Languages



A 2-dimensional table represented as a set of procedures
with internal state

(define (insert! key-1 key-2 value)

(let ((subtable (assoc key-1 (cdr local-table))))

(if subtable

(let ((record (assoc key-2 (cdr subtable))))

(if record

(set-cdr! record value)

(set-cdr! subtable

(cons (cons key-2 value)

(cdr subtable)))))

(set-cdr! local-table

(cons (list key-1

(cons key-2 value))

(cdr local-table)))))

’ok) ;;; maybe val would be better than ’ok

Nurit Haspel CS450 - Structure of Higher Level Languages



A 2-dimensional table represented as a set of procedures
with internal state

(define (dispatch m)

(cond ((eq? m ’lookup-proc) lookup)

((eq? m ’insert-proc!) insert!)

(else (error "Unknown operation - TABLE" m))))

dispatch))

(define operation-table (make-table))

(define get (operation-table ’lookup-proc))

(define put (operation-table ’insert-proc!))

Nurit Haspel CS450 - Structure of Higher Level Languages


