CS450 - Structure of Higher Level Languages

set-car!, set-cdr!, and building tables

October 21, 2020

When do we allocate memory?

@ The basic memory allocator in Scheme is cons.

@ The function 1ist is really defined in terms of cons, so it
also allocates memory.

@ For example, suppose you start out like this:

(define x (list ’a ’b))
(define z1 (coms x x))

Then z1 evaluates to ((a b) a b).

Nurit Haspel CS450 - Structure of Higher Level Languages

How is This Represented?

(cons x x), where xis (1ist ’a ’b)

21—{¢]1]
x— {111

Nurit Haspel CS450 - Structure of Higher Level Languages

How is This Represented?

On the other hand, suppose we evaluate the following Scheme
expression:

(define z2 (cons (list ’a ’b) (list ’a ’b)))

What is different here is that 1ist is evaluated twice—that is, we
are allocating memory two times instead of once. As a result, we
will get the data structure represented here:

2— 511|511/
b
/

Nurit Haspel CS450 - Structure of Higher Level Languages

How is This Represented?

@ Note that the two lists have the same terminal nodes.

@ That's because symbols like >a and ’b, and also the empty
list, are guaranteed to be unique in Scheme's memory.

Exercise:
If on the other hand, we defined

(define z3 (cons (list 2 3)(list 2 3)))

We would most likely get something else. Do you see why?

Nurit Haspel CS450 - Structure of Higher Level Languages

How is This Represented?

Note that we can't distinguish z1 from z2 by just printing them
out:

==> z1
((a b) a b)
==> z2
((a b) a b)

Look at this, however:

==> (eq? zl z2)

#f

==> (eqv? zl z2)
#f

==> (equal? zl1l z2)
#t

Nurit Haspel CS450 - Structure of Higher Level Languages

set-car! and set-cdr!

These two procedures are just pretty much what you think they
are. So for instance, if we have

(define aaa (cons 3 4))

then aaa will evaluate to (3 . 4). And if then we evaluate
(set-car! aaa 7)

then aaa will evaluate to (7 . 4). And so on.

Nurit Haspel CS450 - Structure of Higher Level Languages

A Straightforward Example

Here is a straightforward example, which is pretty typical of the
way these procedures are used: Suppose we start out by defining

(define x ’((a b) c d))
(define y ’(e £))

Here is what they look like in memory:

R IC 1%
[0]
G
] [
1%
e

Nurit Haspel CS450 - Structure of Higher Level Languages

A Straightforward Example

Now suppose we evaluate the expression
(set-car! x y)

xisnow ((e £f) c d).

x—{ s [A—1[+—1]/]
——1tl—11

Nurit Haspel CS450 - Structure of Higher Level Languages

A Trickier Example

Suppose we define (as the book does) the following procedure:

(define (set-to-wow! x)
(set-car! (car x) ’wow) X)

Then after evaluating
(set-to-wow! z1)

we will have

z1 == ((wow b) wow b)
while after evaluating
(set-to-wow! z2)

we will have

z2 ==> ((wow b) a b)

which shows that z1 and z2 really are different.

Nurit Haspel CS450 - Structure of Higher Level Languages

Representing a pair as a dispatch procedure

We can easily define set-car! and set-cdr! as message passing
procedures.

(define (comns x y)
(define (set-x! v) (set! x v))
(define (set-y! v) (set! y v))
(define (dispatch m)
(cond ((eq? m ’car) x)
((eq? m ’cdr) y)
((eq? m ’set-car!) set-x!)
((eq? m ’set-cdr!) set-y!)
(else (error "..."))))
dispatch)

Nurit Haspel CS450 - Structure of Higher Level Languages

Representing a pair as a dispatch procedure

(define (car z) (z ’car))
(define (cdr z) (z ’cdr))
(define (set-car! z new-value)
((z ’set-car!) new-value)
z)
(define (set-cdr! z new-value)
((z ’set-cdr!) new-value)

z)

Nurit Haspel CS450 - Structure of Higher Level Languages

@ Using these new functions, let us see how to construct tables.

@ We'll consider both 1-dimensional and 2-dimensional tables;
they are both extremely useful, and this code is something you
will find useful in the programming assignments (as well as
any other Scheme code you end up writing).

@ See figures 3.22 and 3.23 in SICP.

@ Let us start with a 1-dimensional example

(define (lookup key table)
(let ((record (assoc key (cdr table))))
(if record
(cdr record)

#£)))

Nurit Haspel CS450 - Structure of Higher Level Languages

(define (assoc key records)
(cond ((null? records) #f)
((equal? key (caar records)) (car records))
(else (assoc key (cdr records)))))

(define (insert! key value table)
(let ((record (assoc key (cdr table))))
(if record
(set-cdr! record value)
(set-cdr! table
(cons (cons key value) (cdr table)))))
’ok) ;;; maybe val would be better than ’ok

(define (make-table)
(1ist ’*tablex))

Nurit Haspel CS450 - Structure of Higher Level Languages

1D Table

Nurit Haspel CS450 - Structure of Higher Level Languages

A 2-Dimensional Example

(define (lookup key-1 key-2 table)
(let ((subtable (assoc key-1 (cdr table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record

(cdr record)
#£))

#£)))

Nurit Haspel CS450 - Structure of Higher Level Languages

A 2-Dimensional Example

(define (insert! key-1 key-2 value table)
(let ((subtable (assoc key-1 (cdr table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record
(set-cdr! record value)
(set-cdr! subtable
(cons (cons key-2 value)

(cdr subtable)))))
(set-cdr! table

(cons (list key-1

(cons key-2 value))
(cdr table)))))
’ok) ;;; maybe val would be better than ’ok

Nurit Haspel CS450 - Structure of Higher Level Languages

o
&
Tll
a
AN

table

Gl

(119) Ge1y)

[letters

RS e E S o E1 VA

table]

CIS o ENES o RN S €1 V4

A 2-dimensional table represented as a set of procedures

with internal state

@ This is one way of implementing put and get. put and get
were present from the early days of Lisp, but are not part of
standard Scheme.

@ If you really wanted them, however (and it's not generally
recommend), this is how you could implement them.

(define (make-table)
(let ((local-table (list ’*tablex*)))
(define (lookup key-1 key-2)
(let ((subtable (assoc key-1 (cdr local-table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record
(cdr record)
#£))
#£)))

Nurit Haspel CS450 - Structure of Higher Level Languages

A 2-dimensional table represented as a set of procedures

with internal state

(define (insert! key-1 key-2 value)
(let ((subtable (assoc key-1 (cdr local-table))))
(if subtable
(let ((record (assoc key-2 (cdr subtable))))
(if record
(set-cdr! record value)
(set-cdr! subtable
(cons (cons key-2 value)

(cdr subtable)))))
(set-cdr! local-table

(cons (list key-1

(cons key-2 value))
(cdr local-table)))))
’ok) ;;; maybe val would be better than ’ok

Nurit Haspel CS450 - Structure of Higher Level Languages

A 2-dimensional table represented as a set of procedures

with internal state

(define (dispatch m)
(cond ((eq? m ’lookup-proc) lookup)
((eq? m ’insert-proc!) insert!)
(else (error "Unknown operation - TABLE" m))))
dispatch))

(define operation-table (make-table))

(define get (operation-table ’lookup-proc))
(define put (operation-table ’insert-proc!))

Nurit Haspel CS450 - Structure of Higher Level Languages

