Homework 1 Due date: Monday, October 8, 2012, at 5:30pm

- 1. Let $A = \{a, b, c\}$. Determine the words $x \in A^*$ that satisfy the equality ax = xx.
- 2. Let x, y, u, v be words in A^+ such that xy = uv and $|x| \le |u|$. Show that there exists $z \in A^*$ such that u = xz and y = zv.
- 3. Let A be an alphabet and let $a \in A$.
 - (a) Prove that $a^{-1}A^* = a^{-1}A^+ = A^*$.
 - (b) Prove that $a^{-1}A^n = A^{n-1}$.

Let A be an alphabet. A language $L \subseteq A^*$ is k-bounded if there exist k nonempty words, w_0, \ldots, w_{k-1} in A^+ such that $L \subseteq \{w_0\}^* \cdots \{w_{k-1}\}^*$. L is bounded if it is k-bounded for some $k \in \mathbb{N}$. If L is not bounded, we say that L is unbounded.

- 4. Show that the product and the union of two bounded languages is a bounded language.
- 5. Prove that A^* is bounded if and only if |A| = 1.