

Figure 1: Graph of the Deterministic Finite Automaton  $\mathcal{M}$ 

## Homework 2 Due Monday, November 5, 2012

- 1. Consider the dfa  $\mathcal{M} = (\{a, b\}, \{q_0, q_1, q_2\}, \delta, q_0, \{q_1\})$  whose graph is given in Figure 1. Determine the language accepted by the automaton  $\mathcal{M}$ .
- 2. Construct deterministic finite automata that accept the following languages over the alphabet  $A = \{a, b, c\}$ :
  - (a) The set of all words that begin with *ab* and end with *ba*.
  - (b) The set  $\{bab\}$ .
  - (c) The set  $A^* \{bab\}$ .
  - (d) The set of all words  $x \in A^*$  that contain at least three *as*.
- 3. Each of these languages is a regular language over the alphabet  $A = \{0, 1\}$ . Draw the transition diagram of a deterministic finite automaton that accepts it.
  - (a)  $A^*$ .
  - (b)  $\{\lambda\}$ .
  - (c) Ø.
- 4. Let A be an alphabet. If b is a symbol such that  $b \notin A$ , construct a nondeterministic finite automaton that accepts the language  $A^*b$ .

5. Let L, K be two regular languages on an alphabet A. Prove that the set of words  $t \in A^*$  that can be written as

$$t = xy^R = u^R z$$

for some  $x, u \in L$  and  $y, z \in K$  is a regular language.