

CS 624: Analysis of Algorithms

Spring 2026 Assignment 1

Due: Feb. 15, 2026, on Gradescope

1. This question is based on Appendix C in CLRS, 4th edition, question C.1-11 (page 1183). Argue that for any integers $n \geq 0, j \geq 0, k \geq 0$ and $j + k \leq n$:

$${n \choose j+k} \leq {n \choose j} * {n-j \choose k}$$

Provide both an algebraic proof and an argument based on a method for choosing $j + k$ items out of n . Give an example in which equality does not hold.

2. Given the following function: $t_n = 3t_{n-1} + 4t_{n-2}$, where $t_0 = 0$ and $t_1 = 1$. Find an explicit term for t_n using generating functions.
3. Prove the correctness of the following algorithm for evaluating a polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

at a number x :

Algorithm 1 Horner(a,x)

```
p = a_n
for i = n - 1 to 0 do
    p := p * x + a_i
end for
return p
```

This algorithm, as you probably know, is called *Horner's method*. You can use induction on the loop invariant using initiation, maintenance and termination.

4. Prove that if $f = O(g)$ and $g = O(h)$ then $f = O(h)$.
5. Give asymptotic tight bounds for $T(n)$ for each of the recurrences. Justify your answers.
 - (a) $T(n) = 2T(n/2) + n^3$
 - (b) $T(n) = T(8n/11) + n$
 - (c) $T(n) = 16T(n/4) + n^2$
 - (d) $T(n) = 7T(n/2) + n^2 \log n$
 - (e) $T(n) = 2T(n/4) + \sqrt{n}$
6. Problem 4.2 in Lecture notes 1 (page 7).
7. Problem 4.1 in Lecture notes 2 (page 13).
8. Let $\{f_n : n = 0, 1, \dots\}$ be the Fibonacci sequence (where by convention $f_0 = 0$ and $f_1 = 1$).

(a) This question is based on material from lecture notes 2. Show that $\sum_{n=1}^{\infty} \frac{nf_n}{2^{n-1}} = 20$. Do this by using a generating function as shown in the last section of the Lecture 2 notes, and differentiating. **Hint:** The derivative of $\frac{x}{1-x-x^2}$ is $\frac{1+x^2}{(1-x-x^2)^2}$.

(b) Show why (in the same way as you proved the first part of this problem) you might think that $\sum_{n=1}^{\infty} nf_n = 2$. Then show why this could not possibly be true (it doesn't have to be a long answer, but it has to be convincing).