
CS624 - Analysis of Algorithms

Runtime, Generating Functions

September 15, 2025

Nurit Haspel CS624 - Analysis of Algorithms

Order of Growth

There are a lot of common mathematical functions that it is
important to be familiar with.

The first ones you need to really have a feeling for are powers,
exponential functions, and logarithms.

In particular, you really need to understand ”in your bones”
how they grow for large values of their arguments, and how
they compare to each other.

Nurit Haspel CS624 - Analysis of Algorithms

Order of Growth

x2x3x410x x

x1/2

x1/3

x1/4

log10 x

x

y

Nurit Haspel CS624 - Analysis of Algorithms

Quick Reminder – Logarithms and Exponents

If a, b, and x are all positive, then logb x = loga x · logb a

Proof.

Say logb a = P and loga x = Q.

Then we have bP = a and aQ = x

Hence: bPQ = (bP)Q = aQ = x

That is, blogb a·loga x = x

And so logb a · loga x = logb x

Nurit Haspel CS624 - Analysis of Algorithms

Quick Reminder – Logarithms and Exponents

In other words - all logs are equivalent up to a constant.

These computations are quite standard and you should be able to
prove, for example, that:

ab(loga x) = xb

Nurit Haspel CS624 - Analysis of Algorithms

Asymptotic Notation - big-Oh

Define f and g as functions defined on positive numbers,
taking positive numbers. f ≤ g iff f (x) ≤ g(x) for every x .

Big-Oh is a slightly weaker notation: f = O(g) if there are
two numbers c > 0 and x0 > 0 s.t. f (x) ≤ cg(x) for all
x ≥ x0.

To prove that f = O(g) for some f and g , you must come up
with two constants c and x0 and show that the above is true.

Nurit Haspel CS624 - Analysis of Algorithms

illustration

N0

F(N)

T(N)

Nurit Haspel CS624 - Analysis of Algorithms

Asymptotic Notation - big-Oh

For instance, to prove that 2n2 = O(n3)

You have to find two actual numbers c > 0 and n0 > 0 such
that 2n2 ≤ cn3 for all n ≥ n0

In this case, you should be able to see that c = 1 and n0 = 2
works.

Provided that n ≥ 2, 2n2 ≤ n · n2 = n3 = 1 · n3.
This is what I expect the answers to your homework/exams to
look like.

Notice that f = O(g) doesn’t mean mathematical equality.

Notice also that the big-oh should only be on the right side of
the equal sign.

Nurit Haspel CS624 - Analysis of Algorithms

Asymptotic notations – big-Oh

Example of usage:

If we have a complicated function f whose exact formula we
don’t know we can still write:

f (n) = n3 + O(n2).

This means that there is a function h(n) such that:
f (n) = n3 + h(n) where h(n) = O(n2).

Nurit Haspel CS624 - Analysis of Algorithms

Asymptotic Notation - big-Oh

Some examples (you have to be able to prove them):

n2 = O(n2 − 3)

n2 = O(n2 + 3)

100n2 = O(n2)

n2 = O(n2 + 7n + 2)

n2 + 7n + 2 = O(n2)

If 0 < p < q, then xp = O(xq)

For all a > 0 and b > 0, loga x = O(logb x)

Nurit Haspel CS624 - Analysis of Algorithms

Properties of the O-notation

Lemma

If f = O(h) and g = O(h) then f + g = O(h)

Proof.

f = O(h) and therefore there are constants c > 0 and x0 > 0
s.t. f (x) ≤ ch(x) for all x ≥ x0.

g = O(h) and therefore there are constants d > 0 and x1 > 0
s.t. g(x) ≤ dh(x) for all x ≥ x1.

Notice that these are not the same constants!

We need to put those together to come up with a formula for
f + g .

Nurit Haspel CS624 - Analysis of Algorithms

Properties of the O-notation

Cont.

We can use c + d and max(x0, x1).

Therefore, for all x ≥ max(x0, x1), f (x) + g(x) ≤ (c + d)h(x).

This is because if x ≥ max(x0, x1) then x ≥ x0, so

f (x) ≤ ch(x)

Similarly, if x ≥ max(x0, x1) then x ≥ x1, so

g(x) ≤ dh(x)

Adding the above we see that for x ≥ max(x0, x1)

f (x) + g(x) ≤ (c + d)h(x)

Nurit Haspel CS624 - Analysis of Algorithms

Lower Bound – Ω Notation

f = Ω(g) if there are constants c > 0 and x0 > 0 s.t.
f (x) >= c ∗ g(x) for all x ≥ x0.

You should show pretty easily that f = Ω(g) iff g = O(f).

For example:
√
n = Ω(log(n))

Nurit Haspel CS624 - Analysis of Algorithms

Tight Bound – Θ Notation

f = Θ(g) if there are constants a, b > 0 and x0 > 0 s.t.
ag(x) ≤ f (x) ≤ bg(x) for all x ≥ x0.

It should be easy for you to show that: 1
2n

2 + 2n = θ(n2).

Nurit Haspel CS624 - Analysis of Algorithms

Runtime Table

n
f (n)

lg n n n lg(n) n2 2n n!

10 0.003µs 0.01µs 0.033µs 0.1µs 1µs 3.63 ms
20 0.004µs 0.02µs 0.086µs 0.4µs 1ms 77.1 y.
30 0.005µs 0.03µs 0.147µs 0.9µs 1 sec 8.4× 1015 y.
40 0.005µs 0.04µs 0.0213µs 1.6µs 18.3 min
50 0.006µs 0.05µs 0.0282µs 2.5µs 13 d.
100 0.007µs 0.1µs 0.644µs 10µs 4× 1013 y.
103 0.010µs 1µs 9.966µs 1ms
104 0.013µs 10µs 130µs 100ms
105 0.017µs 100µs 1.67ms 10 sec
106 0.020µs 1ms 19.93ms 16.7 min
107 0.023µs 0.01 sec 0.23 sec 1.16 d.
108 0.027µs 0.1 sec 2.66 sec 115.7 d.
109 0.030µs 1 sec 29.9 sec 31.7 y.

Nurit Haspel CS624 - Analysis of Algorithms

Solving Recursions

Recurrences often arise from solving divide and conquer
problems or other recursive functions.

Example – the Merge Sort algorithm we previously saw.

T (n) =

{
d if n = 1

2T (n/2) + n otherwise

We would like to get an explicit formula whenever possible.

Nurit Haspel CS624 - Analysis of Algorithms

Solving Recurrences

Substitution – proof by induction:

1 Guess a formula or bound of the solution.

2 Prove it by induction, generally for any necessary constant.

Example: T (n) = 4T (n2) + n
Where T(1) is a constant. Note that we should actually write
T (n) = 4T (⌊n2⌋) + n unless n is a power of 2, but this is not a
major point at the moment.

Nurit Haspel CS624 - Analysis of Algorithms

Solve Recurrences by Induction

1 Guess T (n) = O(n3).

2 Prove this by induction:

Proof.

Base case: T (1) ≤ c(13) provided that c is big enough.

Assume that n0 = 1 – we will prove that T (k) ≤ ck3 for all k ≥ 1.

Inductive hypothesis – assume that T (k) ≤ ck3 for 1 ≤ k < n.

Therefore we have

T (n) = 4T
(n

2

)
+ n

≤ 4c
(n

2

)3
+ n by inductive hypothesis since n/2 < n

=
c

2
n3 + n = cn3 −

(c

2
n3 − n

)
≤ cn3

the last inequality being true whenever c
2
n3 − n ≥ 0 and this is certainly true if for

instance c ≥ 2 and n ≥ 1. (Can you prove this?)

Nurit Haspel CS624 - Analysis of Algorithms

Solve Recurrences by Induction

Our initial guess may not be the tight bound. In this case actually
T (n) = O(n2). Again:

1 Guess that T (n) = O(n2).

2 Prove by induction.

Proof.

Base case: T (1) ≤ c ∗ 12 for a big enough c.

We assume that n0 = 1 so that we will show T (k) ≤ c ∗ k2 for all k ≥ 1.

Inductive hypothesis: Assume this is true for all 1 ≤ k < n and prove that
it is true for n.

Trying again to use the recurrence formula:

T (n) = 4T
(

n
2

)
+ n ≤ 4c

(
n
2

)2

+ n = cn2 + n = O(n2)

!!! WRONG !!!

Nurit Haspel CS624 - Analysis of Algorithms

Solve Recurrences by Induction

The last step is wrong!

cn2 + n is never smaller than or equal to cn2 for positive n, c.

Change the inductive hypothesis by subtracting the lower
order term.

Now we assume that T (k) ≤ c1k
2 − c2k for all 1 ≤ k < n and

for big enough c1, c2.

T (n) = 4T
(
n
2

)
+ n ≤ 4

(
c1
(
n
2

)2
− c2

n
2

)
+ n

= c1n
2 − 2c2n + n = c1n

2 − c2n − (c2 − 1)n ≤ c1n
2 − c2n

Which is true for all c2 ≥ 1.

Nurit Haspel CS624 - Analysis of Algorithms

Solve Recurrences by Induction

Assume c2 = 1, then T(1) needs to be bound by c11
2 − c21.

We can assume that c1 is big enough.

In general – this is just another proof by induction.

Remember to state the inductive hypothesis explicitly and
show how the inductive step works.

Expressing the hypothesis as a sequence of statements may be
useful.

Nurit Haspel CS624 - Analysis of Algorithms

Recursion Tree

A more complicated formula: T (n) = T (n4) + T (n2) + n2. We can
build a recursion tree:

T (n)

T(n
4

) T(n
2

)

T(n
16

) T(n
8

) T(n
8

) T(n
4

)

T(1)

T(1)

n2

(
n
4

)2 (
n
2

)2

(
n
16

)2(
n
8

)2(
n
8

)2(
n
4

)2

n2

5
16

n2

25
256

n2

(
5
16

)0

n2

(
5
16

)1

n2

(
5
16

)2

n2

.

.

.(
5
16

)log4 n

n2

.

.

.

≤
(

5
16

)log2 n

n2

Nurit Haspel CS624 - Analysis of Algorithms

Recursion Tree

The tree is filled up until the log4(n) level and partially filled
up to the log2(n) level.

We can bound the runtime from above and below:

T (n) ≥ n2
log4 n∑

k=0

(5

16

)k
= n2

(
5
16

)log4 n+1 − 1
5
16 − 1

and

T (n) ≤ n2
log2 n∑

k=0

(5

16

)k
= n2

(
5
16

)log2 n+1 − 1
5
16 − 1

Nurit Haspel CS624 - Analysis of Algorithms

Recursion Tree

However, the two sums are just the beginning of a convergent
geometric series, both bounded from above by a constant:
1− 1

1− 5
16

They are also bounded below by 1 when n=1.

So n2 ≤ T (n) ≤ cn2 ⇒ T (n) = Θ(n2).

Nurit Haspel CS624 - Analysis of Algorithms

The Master Method

It applies only to recurrences of the form
T (n) = aT (nb) + f (n) where a ≥ 1, b > 1 and f is ultimately
positive (positive above some positive x > x0 for some x0).

So it doesn’t apply to the last recurrence we talked about.

Let us first look at the recurrence aT (nb) (this is called the
watershed function)

This recurrence usually appears in a divide and conquer
problem where a and b are constants.

The problem is divided into a sub-problems of size n
b

Let’s assume for simplicity that a is divisible by b.

Nurit Haspel CS624 - Analysis of Algorithms

The Master Method

Let’s assume also that T (n) = np for some p.

Substituting np into the recurrence we get:
np = a(nb)

p = a np

bp ⇒ bp = a

Taking logb from both sides we get: p = logb a.

Therefore – T (n) = nlogb a

The master theorem is based on this fact.

Nurit Haspel CS624 - Analysis of Algorithms

The Master Method

The original recurrence is slightly more complicated:
T (n) = aT (nb) + f (n).

In the divide and conquer algorithm we merge the a
sub-problems of size n

b .

The conquer part (the total cost of solving the sub-problems)
is described by aT (nb).

Merging them into one complete solution is described by f (n),
aka the driving function.

Nurit Haspel CS624 - Analysis of Algorithms

The Master Method

The master theorem considers three cases:

1 f (n) is small compared with np.

2 f (n) is comparable to np logk n for some k ≥ 0.

3 f (n) is large compared with np.

For this theorem (and not necessarily other cases), “f (n) is smaller
compared with np” means that there is an ϵ > 0 s.t.

f (n) = O(np−ϵ) = O(np/nϵ)

This means that f (n) grows more slowly than np by some positive
power of n.
Remember that p = logb a

Nurit Haspel CS624 - Analysis of Algorithms

The Master Method

Similarly, “f (n) is large compared with np” means that there
is an ϵ > 0 s.t. f (n) = Ω(np+ϵ) = Ω(npnϵ)

This means that f (n) grows faster than np by some positive
power of n.

Moreover, there has to be a constant 0 < c < 1 and a
constant n0, so that for every n > n0, af (

n
b) ≤ cf (n).

a and b are the same as in the recurrence formula.

Nurit Haspel CS624 - Analysis of Algorithms

The Master Theorem – Formulation

Theorem

If a ≥ 1 and b ≥ 1 are constants, f (n) is a function, and T (n) is another
function satisfying the recurrence T (n) = aT (n/b) + f (n) where we interpret
n/b to mean either ⌊n/b⌋ or ⌈n/b⌉, then T (n) can be estimated asymptotically
as follows:

1 If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0, then T (n) = Θ(nlogb a).

When f (n) is small compared with np , f essentially has no effect on the growth

of T , and T (n) = Θ(np), just as it would if f ≡ 0.

2 If f (n) = Θ(nlogb a logk n), for some k ≥ 0 then T (n) = Θ(nlogb a logk+1 n).

This case is significant in that it applies to algorithms which are O(n log n).

3 If f (n) = Ω(nlogb a+ϵ) and if af (n/b) ≤ cf (n) for some constant c with
0 < c < 1 and all sufficiently large n, then T (n) = Θ

(
f (n)

)
.

In this case, f is what really contributes to the growth of T , and the recursion is
immaterial.

Nurit Haspel CS624 - Analysis of Algorithms

Example 1

T (n) = 4T (n2) + n.

Here we have: a=4, b=2, f (n) = n, nlogb a = n2

So this is case 1 where f (n) = O(n2−ϵ) for 0 < ϵ < 1.

So T (n) = Θ(n2).

Nurit Haspel CS624 - Analysis of Algorithms

Example 2

T (n) = 4T (n2) + n2.

Here we have: a=4, b=2, f (n) = n2, nlogb a = n2

So this is case 2 where f (n) = Θ(n2).

So T (n) = Θ(n2 log(n)).

Nurit Haspel CS624 - Analysis of Algorithms

Example 3

T (n) = 4T (n2) + n3.

Now we have: a=4, b=2, f (n) = n3 so again nlogb a = n2.
We have f (n) = Ω(nlogb a+ϵ) for 0 < ϵ < 1. Thus we will be in
Case 3 provided we can show that the additional condition needed
for Case 3 holds.

We need to show that there is some constant 0 < c < 1 and
some n0 s.t. for all n > n0, af (

n
b) ≤ cf (n)

4f (n/2) ≤ cf (n) ⇒ 4(n/2)3 ≤ cn3

Or equivalently, n3

2 ≤ cn3

This certainly holds for any c > 1/2. So we could take
c = 3/4, for example.

Therefore we really are in Case 3, and the conclusion of the master
theorem is that T (n) = Θ(n3).

Nurit Haspel CS624 - Analysis of Algorithms

Example 4

T (n) = 4T (n2) + n2/ log n.

Here we have: a=4, b=2, f (n) = n2/ log n, nlogb a = n2

In this case the master theorem does not apply (any guesses why?).

Nurit Haspel CS624 - Analysis of Algorithms

Example 5

T (n) = 2T (n2) + cn.

Here we have: a=2, b=2, f (n) = cn, nlogb a = n

So this is case 2 where f (n) = Θ(n).

So T (n) = Θ(n log(n)) (this is the case of MergeSort, for
example).

Nurit Haspel CS624 - Analysis of Algorithms

Sequences and Generating Functions

Some important functions can be represented as power series:

ex =
∞∑
n=0

xn

n! = 1 + x + x2

2 + x3

6 + x4

24 + ...

sin(x) =
∞∑
n=0

(−1)n x2n+1

(2n+1)! = x − x3

3! +
x5

5! −
x7

7! + ...

cos(x) =
∞∑
n=0

(−1)n x2n

(2n)! = 1− x2

2! +
x4

4! −
x6

6! + ...

1
1−x =

∞∑
n=0

xn = 1 + x + x2 + x3 + x4 + ... (makes sense for

|x | < 1)

Nurit Haspel CS624 - Analysis of Algorithms

Generating Functions

Given a sequence {a0, a1, . . . , }, the generating function of the
sequence is defined as:

f (x) = a0 + a1x + a2x
2 + · · · =

∞∑

n=0

anx
n

The set of coefficients (like an = 1
n! in the case of f (x) = ex)

yield the power series for the function.

This function can also give us a lot of information about the
sequence.

Nurit Haspel CS624 - Analysis of Algorithms

Generating Functions

We can use generating functions to derive the properties of
sequences from properties of another sequence.

For example: 1
1−x =

∞∑
n=0

xn (for |x | < 1)

Differentiating both sides of the equation w.r.t x:
1

(1−x)2
=

∞∑
n=0

nxn−1 =
∞∑
n=1

nxn−1

Substituting x = 1/2 we get
∞∑
n=1

n
2n−1 = 4

Or equivalently (multiplying both sides by 1/2 to make it look

simpler):
∞∑
n=1

n
2n = 2

Nurit Haspel CS624 - Analysis of Algorithms

Another Example

The binomial theorem says that:

(1 + x)n =
n∑

k=0

(
n

k

)
xk

This just tells us that (1 + x)n is the generating function for the
finite sequence {

(n
k

)
: 0 ≤ k ≤ n}.

Substituting x = 1 we get 2n =
n∑

k=0

(n
k

)

Nurit Haspel CS624 - Analysis of Algorithms

Fibonacci Numbers via Generating Functions

We let {f0, f1, f2, . . . } denote the Fibonacci numbers:
{0, 1, 1, 2, 3, 5, 8, . . . }.
For n ≥ 2, fn = fn−1 + fn−2.

We want to get a closed formula for fn.

We have a formula, but it is not obvious.

We can use a generating function with the recurrence formula
to derive it.

Nurit Haspel CS624 - Analysis of Algorithms

Generating Function for Fibonacci

F (x) = f0 + f1x + f2x
2 + · · · =

∞∑

n=0

fnx
n

F (x) = f0 + f1x + f2x
2 + f3x

3 + f4x
4 + f5x

5 + . . .

xF (x) = f0x + f1x
2 + f2x

3 + f3x
4 + f4x

5 + . . .

x2F (x) = f0x
2 + f1x

3 + f2x
4 + f3x

5 + . . .

Nurit Haspel CS624 - Analysis of Algorithms

Generating Function for Fibonacci

Adding the second and third row and subtracting from the
first cancels most terms out, leaving:

F (x)(1− x − x2) = x so F (x) = x/(1− x − x2).

We need to figure out a formula for the coefficient of the
power series representing the right hand term.

We already know that for |x | < 1,
∞∑
n=0

xn = 1
1−x .

Nurit Haspel CS624 - Analysis of Algorithms

Generating Function for Fibonacci

Our formula is not of this type, we have to convert it.

It is a quadratic polynomial, so it can be converted into a
formula of the kind:

(1− x − x2) = (1− αx)(1− βx).

Multiplying the right side we get: αβ = −1; α+ β = 1.

α(1− α) = −1 ; α2 − α− 1 = 0.

This is a quadratic equation whose solution is α = 1±
√
5

2 .

Nurit Haspel CS624 - Analysis of Algorithms

Generating Function for Fibonacci

The two solutions add up to 1, so let’s make: α = 1+
√
5

2 and

β = 1−
√
5

2

We now know that: F (x) = x
1−x−x2

= x
(1−αx)(1−βx)

Now we can decompose it into two fractions without a
quadratic term.

For this we can find two numbers A and B such that:
x

(1−αx)(1−βx) =
A

1−αx + B
1−βx

Which is true if: A(1− βx) + B(1− αx) = x

Nurit Haspel CS624 - Analysis of Algorithms

Generating Function for Fibonacci

This gives us two equations: A+ B = 0 ; Aβ + Bα = −1.

We know that B = −A and we know that β = 1− α.

Substituting, we get:

A(1− α)− Aα = −1
A− Aα− Aα = −1
A(1− 2α) = −1

Nurit Haspel CS624 - Analysis of Algorithms

Generating Function for Fibonacci

From previous calculation we know that: 1− 2α = −
√
5.

So we have: A = 1√
5

Knowing that A+ B = 0 we get: B = −A = − 1√
5

Finally, putting it all together:

F (x) =
A

1− αx
+

B

1− βx

= A
∞∑

n=0

αnxn + B
∞∑

n=0

βnxn

=
1√
5

∞∑

n=0

(αn − βn)xn

Nurit Haspel CS624 - Analysis of Algorithms

Generating Function for Fibonacci

Since the coefficients of F are the fibonacci numbers we get for the
nth coefficient:

fn =
1√
5
(αn − βn) =

1√
5

((1 +
√
5

2

)n
−
(1−

√
5

2

)n
)

Nurit Haspel CS624 - Analysis of Algorithms

