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Order of Growth

@ There are a lot of common mathematical functions that it is
important to be familiar with.

@ The first ones you need to really have a feeling for are powers,
exponential functions, and logarithms.

@ In particular, you really need to understand "in your bones”
how they grow for large values of their arguments, and how
they compare to each other.
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Quick Reminder — Logarithms and Exponents

If a, b, and x are all positive, then log, x = log, x - log, a

Say log,a = P and log, x = Q.
Then we have b” = a and a® = x
Hence: bPQ = (b7)Q = 2@ = x
That is, b'o8s2108ax — x

And so log, a - log, x = log,, x

]
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Quick Reminder — Logarithms and Exponents

In other words - all logs are equivalent up to a constant.

These computations are quite standard and you should be able to
prove, for example, that:

ab(loga x) Xb
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Asymptotic Notation - big-Oh

o Define f and g as functions defined on positive numbers,
taking positive numbers. f < g iff f(x) < g(x) for every x.

@ Big-Oh is a slightly weaker notation: f = O(g) if there are
two numbers ¢ > 0 and xp > 0 s.t. f(x) < cg(x) for all
X 2 Xp.

e To prove that f = O(g) for some f and g, you must come up
with two constants ¢ and xp and show that the above is true.
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illustration
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Asymptotic Notation - big-Oh

o For instance, to prove that 2n? = O(n3)

@ You have to find two actual numbers ¢ > 0 and ng > 0 such
that 2n% < cn® for all n > ng

@ In this case, you should be able to see that c =1 and ng = 2
works.

o Provided that n >2,2n2<n-n2=n3=1-n3.

@ This is what | expect the answers to your homework /exams to
look like.

@ Notice that f = O(g) doesn't mean mathematical equality.

@ Notice also that the big-oh should only be on the right side of
the equal sign.
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Asymptotic notations — big-Oh

Example of usage:

@ If we have a complicated function f whose exact formula we
don’t know we can still write:

o f(n) = n3+ O(n?).
@ This means that there is a function h(n) such that:
f(n) = n® + h(n) where h(n) = O(n?).
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Asymptotic Notation - big-Oh

Some examples (you have to be able to prove them):
o n?> = 0(n*-3)

n? = O(n? +3)

100m = O(n?)

n? = O(n?>+7n+2)

n? +7n+2 = 0(n?)

If 0 < p < q, then xP = O(x9)

For all a> 0 and b > 0, log, x = O(log, x)

e 6 6 o6 o o
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Properties of the O-notation

If f = O(h) and g = O(h) then f + g = O(h)

e f = O(h) and therefore there are constants ¢ > 0 and xg > 0
s.t. f(x) < ch(x) for all x > xp.

@ g = O(h) and therefore there are constants d > 0 and x; > 0
s.t. g(x) < dh(x) for all x > x;.

@ Notice that these are not the same constants!

@ We need to put those together to come up with a formula for
f+g.

Ol

4
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Properties of the O-notation

We can use ¢ + d and max(xg, x1).

Therefore, for all x > max(xp, x1), f(x) + g(x) < (¢ + d)h(x).
This is because if x > max(xg, x1) then x > xp, so

f(x) < ch(x)

o Similarly, if x > max(xp, x1) then x > x, so

o g(x) < dh(x)

@ Adding the above we see that for x > max(xo, x1)

o (x)+g(x) < (c + d)h(x)
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Lower Bound — €2 Notation

f = Q(g) if there are constants ¢ > 0 and xp > 0 s.t.
f(x) >= c x g(x) for all x > xo.

You should show pretty easily that f = Q(g) iff g = O(f).

For example: v/n = Q(log(n))
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Tight Bound — © Notation

f = ©(g) if there are constants a, b > 0 and xp > 0 s.t.
ag(x) < f(x) < bg(x) for all x > xp.

It should be easy for you to show that: £n? 4 2n = 6(n?).
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Runtime Table

n F(n) lgn n nlg(n) n? 2n n!

10 0.003us | 0.01us | 0.033us | 0.1us lus 3.63 ms
20 0.004us | 0.02us 0.086us 0.4us 1ms 77.1y.
30 0.005us | 0.03us 0.147us 0.9us 1 sec 8.4 x 1010 y.
40 0.005us | 0.04us 0.0213us | 1.6us 18.3 min

50 0.006us | 0.05us | 0.0282us | 2.5us 13 d.

100 0.007us | 0.1us 0.644us 10us 4x 1083 y.

108 0.010us | 1lus 9.966us | 1ms

10* 0.013us | 1Ous 130us 100ms

10° 0.017us | 100us 1.67ms 10 sec

10° 0.020us | 1ms 19.93ms | 16.7 min

107 0.023us | 0.01 sec | 0.23 sec 1.16 d.

108 0.027us | 0.1sec | 2.66 sec | 115.7 d.

10° 0.030us | 1 sec 209sec | 31.7y.
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Solving Recursions

@ Recurrences often arise from solving divide and conquer
problems or other recursive functions.

o Example — the Merge Sort algorithm we previously saw.

T(n)_{d ifn=1

2T(n/2) +n otherwise

@ We would like to get an explicit formula whenever possible.
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Solving Recurrences

Substitution — proof by induction:
@ Guess a formula or bound of the solution.

@ Prove it by induction, generally for any necessary constant.

Example: T(n) =4T(5)+n

Where T(1) is a constant. Note that we should actually write
T(n) =4T([5])+ n unless n is a power of 2, but this is not a
major point at the moment.
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Solve Recurrences by Induction

@ Guess T(n) = O(n?).
@ Prove this by induction:

@ Base case: T(1) < c(13) provided that c is big enough.
@ Assume that ng = 1 — we will prove that T(k) < ck3 for all k > 1.
@ Inductive hypothesis — assume that T (k) < ck® for 1 < k < n.

Therefore we have
n
T(n) = 4T(§) +n
3
< 4c(g) +n by inductive hypothesis since n/2 < n
= Sn3-i-n:z:n3— <£n3—n) gcn3
2 2

the last inequality being true whenever %n3 — n > 0 and this is certainly true if for

instance ¢ > 2 and n > 1. (Can you prove this?) O

V
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Solve Recurrences by Induction

Our initial guess may not be the tight bound. In this case actually
T(n) = O(n?). Again:

© Guess that T(n) = O(n?).

@ Prove by induction.

@ Base case: T(1) < c 12 for a big enough c.
@ We assume that ng = 1 so that we will show T (k) < c % k* for all k > 1.
@ Inductive hypothesis: Assume this is true for all 1 < k < n and prove that
it is true for n.
Trying again to use the recurrence formula:
2
T(n) =4T(3) +n<4c(§) +n=cn?+n=0(r)
I WRONG !!! =y
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Solve Recurrences by Induction

@ The last step is wrong!
o cn? + n is never smaller than or equal to cn? for positive n, c.

@ Change the inductive hypothesis by subtracting the lower
order term.

o Now we assume that T(k) < c1k? — ook for all 1 < k < n and
for big enough c1, .

2
T(n) = 4T(g> +n< 4(c1(g) — czg) +n
=cn? —2cn+n=cn? —cn—(c—1)n< cn® - cn

Which is true for all ¢, > 1.
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Solve Recurrences by Induction

@ Assume cp = 1, then T(1) needs to be bound by ;1% — c,1.
We can assume that ¢; is big enough.

@ In general — this is just another proof by induction.

@ Remember to state the inductive hypothesis explicitly and
show how the inductive step works.

@ Expressing the hypothesis as a sequence of statements may be
useful.
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Recursion Tree

A more complicated formula: T(n)

_ n n 2
=T(7)+ T(3)+n°. We can
build a recursion tree:
0
T(n) n2 n2 li() "2
/ \ 2 2 1
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\
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Recursion Tree

@ The tree is filled up until the logs(n) level and partially filled
up to the logx(n) level.

@ We can bound the runtime from above and below:

log, n 5 \ log, n+1
5\ k = ~1
T(n) > n? (T) _ n2(16) .
pard 6 16— 1
and
log, n 5\ log, n+1
5\ I€ -1
T(n) < n? (T) _ n2(16) -
pard 6 15— 1
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Recursion Tree

@ However, the two sums are just the beginning of a convergent
geometric series, both bounded from above by a constant:
1— 1

=
@ They are also bounded below by 1 when n=1.
@ So n?> < T(n) < cn? = T(n) = 0O(n?).
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The Master Method

o It applies only to recurrences of the form
T(n) =aT(3)+ f(n) where a>1, b> 1 and f is ultimately
positive (positive above some positive x > xg for some xp).

@ So it doesn’t apply to the last recurrence we talked about.

o Let us first look at the recurrence aT (%) (this is called the
watershed function)

@ This recurrence usually appears in a divide and conquer
problem where a and b are constants.
n

@ The problem is divided into a sub-problems of size 7

o Let's assume for simplicity that a is divisible by b.
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The Master Method

o Let's assume also that T(n) = nP for some p.

@ Substituting nP into the recurrence we get:
np:a(g)p:ag—iibp:a

o Taking log, from both sides we get: p = log, a.

o Therefore — T(n) = n'°&»2

@ The master theorem is based on this fact.
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The Master Method

@ The original recurrence is slightly more complicated:
T(n) =aT(3)+f(n).

@ In the divide and conquer algorithm we merge the a
sub-problems of size .

@ The conquer part (the total cost of solving the sub-problems)
is described by aT (7).

@ Merging them into one complete solution is described by f(n),
aka the driving function.
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The Master Method

The master theorem considers three cases:
Q f(n) is small compared with nP.
@ f(n) is comparable to n? logk n for some k > 0.
@ f(n) is large compared with nP.

For this theorem (and not necessarily other cases), “f(n) is smaller
compared with nP" means that there is an € > 0 s.t.

f(n) = O(n"~) = O(n”/n)

This means that f(n) grows more slowly than n” by some positive
power of n.
Remember that p = log, a
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The Master Method

Similarly, “f(n) is large compared with nP” means that there
isan e > 0s.t. f(n) =Q(nP"¢) = Q(nPnc)

This means that f(n) grows faster than nP by some positive
power of n.

@ Moreover, there has to be a constant 0 < ¢ < 1 and a
constant ng, so that for every n > ng, af (%) < cf(n).

@ a and b are the same as in the recurrence formula.
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The Master Theorem — Formulation

Ifa>1 and b > 1 are constants, f(n) is a function, and T(n) is another
function satisfying the recurrence T(n) = aT(n/b) + f(n) where we interpret
n/b to mean either [n/b| or [n/b], then T(n) can be estimated asymptotically
as follows:

@ If f(n) = O(n'°®2=<) for some constant € > 0, then T(n) = ©(n'°&»?).
When f(n) is small compared with nP, f essentially has no effect on the growth
of T, and T(n) = ©(nP), just as it would if f = 0.
n) = n og" n), for some k > 0 then n) = n O, n).
Q Iff(n) = ©(n'*®°log" n), £ k >0 then T(n) = ©(n'% ?log"*" n)
This case is significant in that it applies to algorithms which are O(nlog n).
@ Iff(n) = Q(n'8 %) and if af (n/b) < cf(n) for some constant ¢ with
0 < ¢ < 1 and all sufficiently large n, then T(n) = ©(f(n)).

In this case, f is what really contributes to the growth of T, and the recursion is
immaterial. )
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Example 1

T(n)=4T(5)+n.
Here we have: a=4, b=2, f(n) = n, n'°82 = p?
So this is case 1 where f(n) = O(n>~¢) for 0 < e < 1.

So T(n) = ©(n?).
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Example 2

T(n)=4T(5) + n?.
Here we have: a=4, b=2, f(n) = n?, n'°82 = p?
So this is case 2 where f(n) = ©(n?).

So T(n) = ©(n?log(n)).
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Example 3

T(n) =4T(2)+ n®.

Now we have: a=4, b=2, f(n) = n® so again n'°82 = n?.
We have f(n) = Q(n'°82%€) for 0 < e < 1. Thus we will be in
Case 3 provided we can show that the additional condition needed
for Case 3 holds.
o We need to show that there is some constant 0 < ¢ < 1 and
some ng s.t. for all n > ng, af(3) < cf(n)
o 4f(n/2) < cf(n) = 4(n/2)? < cn®

. 3
o Or equivalently, - < cn®

3

@ This certainly holds for any ¢ > 1/2. So we could take
c = 3/4, for example.

Therefore we really are in Case 3, and the conclusion of the master
theorem is that T(n) = ©(n3).
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Example 4

T(n)=4T(5)+ n?/ log n.
Here we have: a=4, b=2, f(n) = n?/log n, n'°8s? = p2

In this case the master theorem does not apply (any guesses why?).
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Example 5

T(n) =2T(5) + cn.
Here we have: a=2, b=2, f(n) = cn, n'°8? = n
So this is case 2 where f(n) = ©(n).

So T(n) = ©(nlog(n)) (this is the case of MergeSort, for
example).
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Sequences and Generating Functions

Some important functions can be represented as power series:

X - x" _ x2 x3 x*
n=0
H % n_x2ntl x3 x° x7
° sm(x)— ZO( 1) @nD)! F=X—3r+35 — 37 +..
n=
< n_x2n x2 x* x6
@ cos(x) Zo(_l) 2l — -5+ —%&+
n—=
o0
° ﬁz x" =14 x4+ x®+x3 4+ x* + ... (makes sense for
n=0
x| < 1)
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Generating Functions

Given a sequence {ag, a1, . . ., }, the generating function of the
sequence is defined as:

o0
f(x) = ap + a1x + apx® + - -- :Za,,x”
n=0

o The set of coefficients (like a, = & in the case of f(x) = e¥)
yield the power series for the function.

@ This function can also give us a lot of information about the
sequence.
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Generating Functions

@ We can use generating functions to derive the properties of
sequences from properties of another sequence.

[e.°]
For example: 12 = > x" (for |x| < 1)

n=0

DifFerentiating both sides of the equation w.r.t x:

2_annl annl

Substituting x = 1/2 we get Z et = 4
n=1

Or equivalently (multiplying both sides by 1/2 to make it look
o0

simpler): > 5% =2
n=1
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Another Example

The binomial theorem says that:

(1+x)" = Zn: (Z)xk

k=0

This just tells us that (1 4+ x)" is the generating function for the
finite sequence {(}) : 0 < k < n}.
n

Substituting x = 1 we get 2" = kZ_:o (Z)
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Fibonacci Numbers via Generating Functions

We let {fy, f1, f2, ...} denote the Fibonacci numbers:
{0,1,1,2,3,5,8,... }.

For n> 2, f, = fo_1 + fa_s.

We want to get a closed formula for f,.

We have a formula, but it is not obvious.

We can use a generating function with the recurrence formula
to derive it.
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Generating Function for Fibonacci

F(x)=fot ix+ P+ =) fox"
n=0

F(x)=fo+ fix + ox® + i + fix* + f5x® + ...
xF(x) = fox + Ax? + xS+ Bx* + x> + ...
X2F(X) = x>+ A3+ hx* + x>+ ...
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Generating Function for Fibonacci

@ Adding the second and third row and subtracting from the
first cancels most terms out, leaving:

o F(x)(1—x—x2)=xs0 F(x) =x/(1—x—x?).
@ We need to figure out a formula for the coefficient of the
power series representing the right hand term.

[e.°]
o We already know that for [x| <1, > x" = —.

1—x
n=0
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Generating Function for Fibonacci

Our formula is not of this type, we have to convert it.

It is a quadratic polynomial, so it can be converted into a
formula of the kind:

o (1—x—x%)=(1-ax)(1-px).

o Multiplying the right side we get: af = -1, a+ 8 =1.
ea(l-a)=-1;a2-a—-1=0.

@ This is a quadratic equation whose solution is o = %\/g
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Generating Function for Fibonacci

@ The two solutions add up to 1, so let’'s make: a = 1+72\/g and
1—
B = 2\/5

. — X _ X
o We now know that: F(x) = 5 = =) (1=F%)
@ Now we can decompose it into two fractions without a

quadratic term.

@ For this we can find two numbers A and B such that:

X _ _A + B
(1—ax)(1-pBx) 1—ax 1-6x
@ Which is true if: A(1 — 8x) + B(1 — ax) = x
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Generating Function for Fibonacci

@ This gives us two equations: A+ B =0; A8+ Ba = —1.
@ We know that B = —A and we know that 5 =1 — «.
@ Substituting, we get:
Al —a)— Aa = -1
A—Aa— Aa = -1
A(l—2a)=-1
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Generating Function for Fibonacci

@ From previous calculation we know that: 1 — 2a = —/5.

|
@ So we have: A_ﬁ
o Knowing that A+ B=0weget: B=-A=—-1

S

o Finally, putting it all together:

A n B
1—ax 1—ﬁx

_Azanxn+BZBn n

1oo
_n
B

F(x) =
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Generating Function for Fibonacci

Since the coefficients of F are the fibonacci numbers we get for the
nt" coefficient:

f, = 15(an_6n) _ \1f5(<1 +2\/§>n_ (1—2\/§>n)
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