
CS624 - Analysis of Algorithms

Heaps

September 17, 2025

Nurit Haspel CS624 - Analysis of Algorithms

Heaps and Heapsort – Introduction to Heaps

Define the height of a node in a tree as the number of edges on
the longest path from that node down to a leaf

4

3 1

1 2 0 0

0 0 1

0

The height of the tree, H, is the height of its root.

Nurit Haspel CS624 - Analysis of Algorithms

Heaps and Heapsort – Introduction to Heaps

The level of the root is 0, the children of the root are at level 1. In
general, the children of a node of level k are at level k + 1.

0

1 1

2 2 2 2

3 3 3

4

Nurit Haspel CS624 - Analysis of Algorithms

Heaps and Pre-Heaps

In a binary tree, there are at most 2k nodes at level k .

If the highest level is completely filled in, that level contains
2H nodes, and the tree contains
1 + 2 + 4 + · · ·+ 2H = 2H+1 − 1 nodes.

A heap is a special kind of a binary tree (do not confuse with
the CS term related to memory allocation!).

Let us define a pre − heap as follows:

All leaves are on at most two adjacent levels.
Except maybe the lowest level, all the levels are completely
filled. The leaves on the lowest level are filled in, without gaps,
from the left.

Nurit Haspel CS624 - Analysis of Algorithms

Pre-Heap – Example

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12]

Notice that it can be represented as a simple array.

The children of the node holding A[n] are the nodes holding
A[2n] and A[2n + 1], and the parent of the the node holding
A[n] is A

[
⌊n/2⌋

]
.

Nurit Haspel CS624 - Analysis of Algorithms

Pre-Heap – Another Example

3

2 1

1 1 0 0

0 0 0 0

The nodes are tagged by their height.

All the levels less than 3 are completely filled in, and there are
a total of 23 − 1 nodes at those levels.

Nurit Haspel CS624 - Analysis of Algorithms

Pre-Heap Properties

If we have a pre-heap with n nodes, denote its height by H.

As seen above, we must have 2H ≤ n ≤ 2H+1 − 1 < 2H+1.
Equivalently, H = ⌊log2 n⌋

Lemma

In a pre-heap with n elements, there are
⌈
n
2

⌉
leaves.

Proof.

Some leaves are at level H, and some are at level H − 1.

Since the number of nodes at level H − 1 or less is 2H − 1, the
number of leaves at level H is n − (2H − 1).

The parent of node n is node
⌊
n
2

⌋
, and that node is the last

node of height 1.

Nurit Haspel CS624 - Analysis of Algorithms

Pre-Heap Properties

Proof (Cont.)

So all the rest of the nodes at level H − 1 are of height 0, i.e.,
are leaf nodes.

Therefore the number of leaves at level H − 1 is
(2H − 1)−

⌊
n
2

⌋
.

Hence the total number of leaves is

n − (2H − 1) + (2H − 1)−
⌊n
2

⌋
= n −

⌊n
2

⌋
=
⌈n
2

⌉

Nurit Haspel CS624 - Analysis of Algorithms

Pre-Heap Properties

.

. .

.

Level 0

Level 1

Level 2

Level 3

Level H-1

Level H

node 2H − 1

node 2H

node n

Nurit Haspel CS624 - Analysis of Algorithms

Pre-Heap Properties

Corollary

In a pre-heap with height H, there are at most 2H leaves.

Proof.

If n is the number of elements in the pre-heap, we know that
2H ≤ n ≤ 2H+1 − 1 < 2H+1. Then by the Lemma, the number of
leaves is ⌈n

2

⌉
≤ 2H+1

2
= 2H

Nurit Haspel CS624 - Analysis of Algorithms

Pre-Heap Properties

Theorem

In a pre-heap with n elements, there are at most n
2h

nodes at
height h.

Proof.

We have just seen that there are at most 2H leaves in such a
tree, and the leaves are just the nodes at height 0.

If we take away the leaves, we have a smaller pre-heap with at
most 2H−1 leaves, and these leaves are exactly the nodes at
height 1 in the original tree.

Continuing, we see that there are at most 2H−h nodes at
height h in the original tree, therefore 2H−h = 2H

2h
≤ n

2h

Nurit Haspel CS624 - Analysis of Algorithms

Heaps

Definition

A heap is a binary tree with a key in each node.

The keys must be comparable.

Additionally, the heap must have the following properties:

All leaves are on at most two adjacent levels.
With the possible exception of the lowest level, all the levels
are completely filled. The leaves on the lowest level are filled
in, without gaps, from the left.
The key at each node is greater than or equal to the key in any
descendant of that node.

Nurit Haspel CS624 - Analysis of Algorithms

Heaps

Note that another way of phrasing the third condition would
be:

The key in the root is greater than or equal to that of its
children, and its left and right subtrees are again heaps.

Thus every heap is a pre-heap.

Even though the shape of a heap containing n elements is
uniquely determined (since it is a pre-heap), the arrangement
of those n elements is not.

Nurit Haspel CS624 - Analysis of Algorithms

Example – Two Heaps With the Same Set of Keys

16

14 10

8 7 9 3

2 4 1

16

14 8

4 10 3 7

1 2 9

Nurit Haspel CS624 - Analysis of Algorithms

The Heapify Procedure

The fundamental procedure to build a heap.

We have a binary tree in the shape of a heap (but perhaps not
actually a heap).

We represent the tree as an array A[1..n], where n is the size
of the heap.

We look at node i (holding the value A[i]). We assume that:

The tree rooted at l = Left(i) is a heap.
The tree rooted at r = Right(i) is a heap.

However, we do not assume that the tree rooted at i is a heap.

Heapify works by letting the value A[i] “float down” to its
proper position in the heap.

Nurit Haspel CS624 - Analysis of Algorithms

The Heapify Procedure

Algorithm 1 Heapify(A,i)

1: l ← Left(i)
2: r ← Right(i)
3: if l ≤ Heapsize[A] and A[l] > A[i] then
4: largest ← l
5: else
6: largest ← i
7: end if
8: if r ≤ heapsize[A] and A[r] > A[largest] then
9: largest ← r

10: end if
11: if largest ̸= i then
12: exchangeA[i]↔ A[largest]
13: Heapify(A, largest)
14: end if

Nurit Haspel CS624 - Analysis of Algorithms

Heapify – Example

16

4 10

14 7 9 3

2 8 1

16

14 10

4 7 9 3

2 8 1

16

14 10

8 7 9 3

2 4 1

Nurit Haspel CS624 - Analysis of Algorithms

Running Time of Heapify

The time needed to run Heapify on a subtree of size n rooted at a
given node i is

time Θ(1) to fix up the relationships among the elements A[i],
A
[
Left(i)

]
, and A

[
Right(i)

]
time to run Heapify on a subtree rooted at one of the children
of node i .

That subtree has size at most 2n/3 – the worst case occurs
when the last row of the tree is exactly half full.

So the running time T (n) can be characterized by the recurrence

T (n) ≤ T (2n/3) + Θ(1)

This falls into case 2 of the “master theorem”, and so we must
have T (n) = O(log n)

Nurit Haspel CS624 - Analysis of Algorithms

Building a Heap

The heap is built from the bottom up, starting at the first non-leaf
node.

Algorithm 2 BuildHeap(A)

1: heapsize[A]← length[A]
2: for i ←

⌊
length[A]/2

⌋
to 1 do

3: Heapify(A, i)
4: end for

To prove that this is correct We use the following loop invariant:

Lemma

At the start of each iteration of the for loop, each node
i + 1, i + 2, . . . , n is the root of a heap.

Nurit Haspel CS624 - Analysis of Algorithms

Proof of Correctness

Proof.

On the first iteration of the loop, i = ⌊n/2⌋. Each node
⌊n/2⌋+ 1, ⌊n/2⌋+ 2, . . . , n is a leaf and is thus the root of a trivial
heap.

Inductive step – going from i + 1 to i , we assume that each element
i + 1, i + 2, . . . , n is the root of a heap.

Therefore each of the two children of node i (i.e., nodes 2i and
2i + 1) is the root of a heap.

Therefore the call to Heapify(A, i) makes i the root of a heap.

Further, all nodes which are not descendants of i are untouched by
the call to Heapify(A, i), (Do you see why?) and so we can
conclude that each node i , i + 1, . . . , n is now the root of a heap.

Nurit Haspel CS624 - Analysis of Algorithms

Running Time of BuildHeap

The number of elements of the heap at height h is ≤ n
2h
, and

the cost of running Heapify on a node of height h is O(h).

The root of a heap of n elements has height ⌊log2 n⌋.
Therefore the worst-case cost of running BuildHeap on a heap
of n elements is bounded by

⌊log2 n⌋∑
h=0

n

2h
O(h) = O

(
n

⌊log2 n⌋∑
h=0

h

2h

)
= O(n)

since the sum converges, so we don’t care what the upper bound
of the summation is.

Nurit Haspel CS624 - Analysis of Algorithms

Heap Properties

Heaps give us partial information about the order of elements
in a set.

We can tell immediately what the largest element is.

They are really cheap to build and can be stored in a simple
array.

This makes them very useful for various applications.

Nurit Haspel CS624 - Analysis of Algorithms

Heapsort

Algorithm 3 Heapsort(A)

1: BuildHeap(A)
2: for i ← length[A] to 2 do
3: exchange A[1]↔ A[i]
4: heapsize[A]← heapsize[A]− 1
5: Heapify(A, 1)
6: end for

The call to BuildHeap takes time O(n). Each of the n − 1 calls to
Heapify takes time O(log n). Hence the total running time is (in
the worst case) O(n log n).

Nurit Haspel CS624 - Analysis of Algorithms

Priority Queues

Definition

A priority queue is a data structure that maintains a set S of
elements, each with an associated value called a key. (As usual,
the keys must be comparable.) The priority queue supports the
following operations:

Insert(S , x) inserts the element x into the set S .

Maximum(S) returns the element of S with the largest key.

ExtractMax(S) removes and returns the element of S with the
largest key.

IncreaseKey(S , x , k) increases the value of element x ’s key to the
new value k, which is assumed to be at least as large
as x ’s current key value.

A priority queue can be implemented using a heap.

Nurit Haspel CS624 - Analysis of Algorithms

Priority Queue Operations

Algorithm 4 HeapMaximum(A)

1: return A[1]

Obviously, the run time is O(1).

Algorithm 5 HeapExtractMax(A)

1: if heapsize[A] < 1 then
2: ERROR – heap underflow
3: end if
4: maxx ← A[1]
5: A[1]← A[heapsize[A]]
6: heapsize[A]← heapsize[A]− 1
7: Heapify(A, 1)
8: return maxx

Here the running time is dominated by the call to Heapify, so it is

O(log n).

Nurit Haspel CS624 - Analysis of Algorithms

Priority Queue Operations

Algorithm 6 HeapIncreaseKey(A, i, key)

1: if key < A[i] then
2: ERROR – new key is smaller than current key
3: end if
4: A[i]← key
5: while i > 1 and A[Parent(i)] < A[i] do
6: exchangeA[i]↔ A[Parent(i)]
7: i ← Parent(i)
8: end while

We just increase the key of A[i], and then let that node “float up”
to its proper position.

Nurit Haspel CS624 - Analysis of Algorithms

HeapIncreaseKey – Example

16

14 10

8 7 9 3

2 4 1

16

14 10

8 7 9 3

2 15 1

16

14 10

15 7 9 3

2 8 1

16

15 10

14 7 9 3

2 8 1

Nurit Haspel CS624 - Analysis of Algorithms

HeapInsert

Algorithm 7 HeapInsert(A, key)

1: heapsize[A]← heapsize[A] + 1
2: A[heapsize[A]]← −∞
3: HeapIncreaseKey(A, heapsize[A], key)

The running time here is again O(log2 n).
Thus, a heap supports any priority queue operation on a set of size
n in O(log n) time.

Nurit Haspel CS624 - Analysis of Algorithms

