
CS624 - Analysis of Algorithms

Quicksort

October 1, 2025

Nurit Haspel CS624 - Analysis of Algorithms



Quicksort

Algorithm 1 Quicksort(A,p,r)

1: if p < r then
2: q ← Partition(A, p, r)
3: Quicksort(A, p, q − 1)
4: Quicksort(A, q + 1, r)
5: end if

Nurit Haspel CS624 - Analysis of Algorithms



Quicksort

After the partition has been called the following is true:

1 p ≤ q ≤ r .

2 The number A[q] is in its final position. It will never be
moved again.

3 If i < q, then A[i ] < A[q], and if i > q, then A[i ] > A[q].

Remember that q is the position of the pivot after partitioning.

Nurit Haspel CS624 - Analysis of Algorithms



The Partition Method

Algorithm 2 Partition(A,p,r)

1: x ← A[r ] �x is the “pivot”.
2: i ← p − 1 �i maintains the “left-right boundary”.
3: for j ← p to r − 1 do
4: if A[j ] ≤ x then
5: i ← i + 1
6: exchange A[i ]↔ A[j ]
7: end if
8: end for
9: exchange A[i + 1]↔ A[r ]

10: return i + 1

Nurit Haspel CS624 - Analysis of Algorithms



The Partition Method

(a) 2 8 7 1 3 5 6 4

i p, j r

(b) 2 8 7 1 3 5 6 4

p, i j r

(c) 2 8 7 1 3 5 6 4

p, i j r

Nurit Haspel CS624 - Analysis of Algorithms



The Partition Method

(d) 2 8 7 1 3 5 6 4

p, i j r

(e) 2 1 7 8 3 5 6 4

p i j r

(f) 2 1 3 8 7 5 6 4

p i j r

Nurit Haspel CS624 - Analysis of Algorithms



The Partition Method

(g) 2 1 3 8 7 5 6 4

p i j r

(h) 2 1 3 8 7 5 6 4

p i r

(i) 2 1 3 4 7 5 6 8

p i r

Nurit Haspel CS624 - Analysis of Algorithms



Partition, Proof of Correctness

2 1 3 8 7 5 6 4

p i j r

Lemma

At the beginning of each iteration:

A[p..i ] are known to be ≤ pivot.

A[i + 1..j − 1] are known to be > pivot.

A[j , r − 1] not yet examined.

A[r ] is the pivot.

Nurit Haspel CS624 - Analysis of Algorithms



Partition, Proof of Correctness

Proof.

Base: When we start out, j = p, i is p - 1, and the above are
trivially true.
At the top of iteration j0 of the for loop, i has the value i0. Then by
inductive hypothesis , at the top of that iteration of the for loop,

All entries in A[p..i0] are ≤ pivot.

All entries in A[i0 + 1..j0 − 1] are > pivot.

A[j0..r − 1] consists of elements whose contents have not yet
been examined.

A[r ] = pivot

Nurit Haspel CS624 - Analysis of Algorithms



Partition, Proof of Correctness, Case of A[j0] ≤ pivot

Proof.

A[j0] and A[i0 + 1] are interchanged.

i0 → i1 = i0 + 1, which is the value of i at the top of the next
iteration of the for loop.

At the next iteration of the for loop j → j1 = j0 + 1. Thus, since
we interchanged A[j0] and A[i0 + 1], we have

All entries in A[p..i1] are ≤ pivot.

All entries in A[i1 + 1..j1 − 1] are > pivot. (These are the
same elements that were originally in A[i0 + 1..j0 − 1]. The
first one has been moved up to the end.)

A[j1..r − 1] have not yet been examined.

A[r ] = pivot.

And this is just the inductive hypothesis at the top of the
j0 + 1 = j1 iteration of the for loop.

Nurit Haspel CS624 - Analysis of Algorithms



Partition, Proof of Correctness, Case of A[j0] > pivot

Proof.

Nothing is done. At the next iteration of the for loop, we have

i1 = i0 (because we didn’t increment i).

j1 = j0 + 1 (because we always increment j when we go to the
next iteration).

No change was made to the elements of the array A.

Thus, we have

All entries in A[p..i1] continue to be ≤ pivot.

All entries in A[i1 + 1..j1 − 1] are >the pivot. These are the
original elements A[i0 + 1..j0 − 1] plus A[j1 − 1] = A[j0]

A[j1..r − 1] have not yet been examined.

A[r ] = pivot

And this is just the the inductive hypothesis at the top of the
j0 + 1 = j1 iteration of the for loop. This completes the proof.

Nurit Haspel CS624 - Analysis of Algorithms



Partition, Proof of Correctness, Bottom Line

Proof.

At the conclusion of the for loop, element r (which is the
pivot element) is exchanged with element i+1 (which is the
left-most element that is greater than the pivot element).

This ensures that all the elements to the left of the pivot
element have values ≤ the pivot, and all the elements to the
right of the pivot element have values > the pivot.

Nurit Haspel CS624 - Analysis of Algorithms



Running Time – Best Case

The runtime of partition is clearly Θ(n).

The best case is when the array is partitioned into two equal
parts.

In this case the recurrence is T (n) = 2T (n/2) + Θ(n).

We already know this is Θ(n log n).

Nurit Haspel CS624 - Analysis of Algorithms



Running Time – Worst Case

The worst case happens when the pivot partitions the array
into two sub arrays of size n-1 and 0.

With our setting, this happens when the array is already
sorted.

Thus we have:

T (n) = T (n − 1) + T (0) + Θ(n)

= T (n − 1) + Θ(n) =
n∑

j=0

Θ(j) = Θ
(n(n + 1)

2

)
= Θ(n2)

Nurit Haspel CS624 - Analysis of Algorithms



Running Time – Average Case

We know the average runtime is O(n log n)

This means that on average we hit a ”good” case.

This is quite untypical, as usually the average case is no
better than the worst case.

Nurit Haspel CS624 - Analysis of Algorithms



Running Time – Average Case

What happens if the pivot divides the array into two sub-arrays of
0.9n and 0.1n?

T (n) cn

T

(
1
10n

)
T

(
9
10n

)
cn

T

(
1

100n

)
T

(
9

100n

)
T

(
9

100n

)
T

(
81
100n

)
cn

T (1) T

(
81

1000n

)
T

(
729
1000n

)
cn

≤ cn

T (1) ≤ cn

level log10 n

level log10/9 n

Nurit Haspel CS624 - Analysis of Algorithms



Running Time – Average Case

There are 1 + log(10/9) n levels and each has O(n) cost.

The total cost is therefore O(n log n).

In other words – quicksort is not THAT sensitive to the choice
of pivot.

But – the pivot is not always at the same relative position.

What happens if occasionally it is as bad as can be?

Suppose every other iteration the pivot is the largest element.

Nurit Haspel CS624 - Analysis of Algorithms



T (n) cn

T (0) T (n− 1) cn

T
(
n−1
2 − 1

)
T
(
n−1
2

)
cn

We simply double the number of levels, it is still O(n log(n))

Nurit Haspel CS624 - Analysis of Algorithms



Randomized Analysis

Remember the average runtime analysis of insertion sort.

We averaged the running time over all possible inputs
assuming they are all equally likely – random input,
distributed uniformly.

To do an average runtime analysis we have to know the
distribution of the input.

Nurit Haspel CS624 - Analysis of Algorithms



Randomized Analysis

Probabilistic analysis is the use of probability to analyze the
runtime of an algorithm.

It is used to calculate the average running time, assuming
knowledge of the distribution of the input.

A randomized algorithm is an algorithm that involves some
randomness as part of its run.

This doesn’t mean the input is random.

Nurit Haspel CS624 - Analysis of Algorithms



Randomized Analysis

We have a random number generator Random(p,r) which
produces numbers between p and r, each with equal
probability.

The selected number is the pivot index.

In practice most random algorithms produce pseudo-random
numbers.

When analyzing the running time of a randomized algorithm
we take the expected run time over all inputs.

Nurit Haspel CS624 - Analysis of Algorithms



Randomized Quicksort

Define a function as follows:

Algorithm 3 RandomizedPartition(A,p,r)

1: i ← Random(p, r)
2: ExchangeA[i ]↔ A[r ]
3: return Partition(A, p, r)

Nurit Haspel CS624 - Analysis of Algorithms



Randomized Quicksort

Accordingly:

Algorithm 4 RandomizedQuicksort(A,p,r)

1: if p < r then
2: q ← RandomizedPartition(A, p, r)
3: RandomizedQuicksort(A, p, q − 1)
4: RandomizedQuicksort(A, q + 1, r)
5: end if

Nurit Haspel CS624 - Analysis of Algorithms



Rigorous Worst Case Analysis of Quicksort

Let T (n) be the worst case running time for quicksort (or
randomized quicksort).

We know there is a constant a > 0 such that
T (n) ≤ max0≤q≤n−1

(
T (q) + T (n − q − 1)

)
+ an

We know that probably T (n) = O(n2).

This means there is a constant c such that T (n) ≤ cn2.

Nurit Haspel CS624 - Analysis of Algorithms



Rigorous Worst Case Analysis of Quicksort

Proof by induction.

This is certainly true for k=1.

Suppose this is true for all k < n with some fixed constant c.

T (n) ≤ max
0≤q≤n−1

(
T (q) + T (n − q − 1)

)
+ an

≤ c max
0≤q≤n−1

(
q2 + (n − q − 1)2

)
+ an

The expression
(
q2 + (n − q − 1)2

)
is a convex function,

achieving a maximum at the endpoints – 0 and n-1.

In those endpoints the value is (n − 1)2.

Nurit Haspel CS624 - Analysis of Algorithms



Rigorous Worst Case Analysis of Quicksort

Proof by induction, Cont.

Therefore:

T (n) ≤ max
0≤q≤n−1

(
T (q) + T (n − q − 1)

)
+ an

≤ c max
0≤q≤n−1

(
q2 + (n − q − 1)2

)
+ an

≤ cn2 − c(2n − 1) + an

= cn2 − (2c − a)n + c

≤ cn2 − (2c − a)n + cn †
= cn2 − (c − a)n

Assuming n ≥ 1 and picking a large enough c so that c ≥ a.

† Here’s where we use the assumption that n ≥ 1.

Nurit Haspel CS624 - Analysis of Algorithms



Rigorous Worst Case Analysis of Quicksort

The above gives an upper bound to the worst case runtime.

Previously we have seen a case where the runtime is quadratic.

That’s when the pivot always divides the array into n-1 and 0
sub-arrays.

We now saw that T (n) = O(n2).

So in the worst case T (n) = Θ(n2).

Nurit Haspel CS624 - Analysis of Algorithms



Average Case Analysis – Method 1

It is easy to use Randomized-Quicksort.

Let T(n) be the average runtime for an array of size n:

T (n) = 1
n

n−1∑
q=0

(
T (q) + T (n − q − 1)

)
+ cn +Θ(1).

Which is actually T (n) = 2
n

n−1∑
q=0

T (q) + cn +Θ(1).

We wrote cn +Θ(1) rather than Θ(n) since we can assume
we do “everything” every time we call Partition.

This is a worst case assumption that allows us to do
something really nice mathematically.

Nurit Haspel CS624 - Analysis of Algorithms



Average Case Analysis – Method 1

Multiplying by n we get: nT (n) = 2
n−1∑
q=0

T (q) + cn2 +Θ(n)

Multiplying by n + 1 we get:

(n + 1)T (n + 1) = 2
n∑

q=0
T (q) + c(n + 1)2 +Θ(n)

Subtracting the two cancels most terms out:
(n + 1)T (n + 1)− nT (n) = 2T (n) + Θ(n)

Nurit Haspel CS624 - Analysis of Algorithms



Average Case Analysis – Method 1

Collecting terms: (n + 1)T (n + 1) = (n + 2)T (n) + Θ(n)

Dividing by (n + 1)(n + 2) we get: T (n+1)
n+2 = T (n)

n+1 +Θ
(
1
n

)

Defining g(n) = T (n)
(n+1) : g(n + 1) = g(n) + Θ

(
1
n

)

Thus: g(n) = Θ

(
n−1∑
k=1

1
k

)
= Θ(log n)

Going back to T: T (n) = (n + 1)g(n) = Θ(n log n)

Nurit Haspel CS624 - Analysis of Algorithms



Average Case Analysis – Method 2

The total cost = the sum of the costs of all the calls to
RandomizedPartition.

The cost of a call to RandomizedPartition is O(No. for loop
execustions) which is O(No. comparisons).

The expected cost of RandomizedQuicksort is O(expected
number of comparisons).

Notice that once a key xk is chosen as pivot, the elements to
its left will never be compared to the elements to its right.

Nurit Haspel CS624 - Analysis of Algorithms



Average Case Analysis – Method 2

Consider {xi , xi+1, ..., xj−1, xj}, the set of keys in sorted order.

Any two keys here are compared only if one of them is pivot
and that is the last time they are all in the same partition.

Each key is equally likely to be chosen.

xi and xj can be compared only if one of them is pivot and
this will only happen if this is the first pivot from the set
{xi , xi+1, ..., xj−1, xj}.
The probability of this is 2

(j−i+1) .

Nurit Haspel CS624 - Analysis of Algorithms



Average Case Analysis – Method 2

The expected number of comparisons is:

∑

i<j

2

j − i + 1
=

n−1∑

i=1

n∑

j=i+1

2

j − i + 1
=

n−1∑

i=1

n−i∑

k=1

2

k + 1

≤
n−1∑

i=1

n∑

k=1

2

k
= 2(n − 1)Hn = O(n log n)

Nurit Haspel CS624 - Analysis of Algorithms



The Hiring Problem

You need an office assistant and want to minimize the hiring
cost

An agency sends one candidate every day – at a fixed cost Ci

Interview the person, either hire him/her at a cost of
Ch >> Ci (and fire the old one), or keep old one.

We always want the best person – hire if interviewee is better
than current person.

Assume we have a metric that can always determine, given
two candidates, who is better, and that no two candidates are
equally good.

The candidates are sent in a random order.

Nurit Haspel CS624 - Analysis of Algorithms



The Hiring Problem

Define a function as follows:

Algorithm 5 Hire-Candidate(n)

1: bestCandidate ← 0 // Dummy candidate
2: for j ← 1..n do
3: Pay Ci

4: Interview Candidate j
5: if i better than best-candidate then
6: Pay Ch

7: Hire Candidate j
8: bestCandidate ← j
9: end if

10: end for

Nurit Haspel CS624 - Analysis of Algorithms



The Hiring Problem – Analysis

The total cost is n ∗ Ci +m ∗ Ch where m is the number of
candidates we hire.

Assume applicants come in random order – each permutation
of applicants is equally likely.

What is the worst case?

We hire every candidate! So they are sorted in increasing
order of quality.

What is the best case?

Nurit Haspel CS624 - Analysis of Algorithms



The Hiring Problem – Analysis

The total cost is n ∗ Ci +m ∗ Ch where m is the number of
candidates we hire.

Assume applicants come in random order – each permutation
of applicants is equally likely.

What is the worst case?

We hire every candidate! So they are sorted in increasing
order of quality.

What is the best case?

Nurit Haspel CS624 - Analysis of Algorithms



The Hiring Problem – Analysis

The total cost is n ∗ Ci +m ∗ Ch where m is the number of
candidates we hire.

Assume applicants come in random order – each permutation
of applicants is equally likely.

What is the worst case?

We hire every candidate! So they are sorted in increasing
order of quality.

What is the best case?

Nurit Haspel CS624 - Analysis of Algorithms



The Hiring Problem – Average Case

Let us define a random variable Xi as follows:

Xi =

{
1 Xi is hired

0 Xi is not hired

This is called an indicator random variable and it is good at
analyzing sequences of random trials.

Let X be the random variable whose value equals the number
of times we hire a new assistant.

The expected value of X is E [X ] =
n∑

i=1
Pr{X = x}

Using indicator random variables,
E [Xi ] = Pr{Candidate i is hired}

Nurit Haspel CS624 - Analysis of Algorithms



The Hiring Problem – Average Case

Candidate i is hired when s/he is better than all previous i-1
candidates.

We assume candidates arrive in random order.

Any one of the first i candidates is equally likely to be the
most qualified so far.

Therefore, candidate i has a 1/i probability of being the most
qualified so far, and hence a 1/i probability of being hired.

So, E [Xi ] =
1
i .

E [X ] = E

[
n∑

i=1
Xi

]
=

n∑
i=1

E [Xi ] =
n∑

i=1

1
i = ln(n) + O(1)

It is the harmonic series.

The expected hiring cost is therefore O(Ch ln n).

Nurit Haspel CS624 - Analysis of Algorithms


