CS624 - Analysis of Algorithms

Medians and Order Statistics

October 15, 2025

Midterm Exam I

- The midterm exam will take place on Monday, October 20, in class.
- Covered material: Induction, runtime analysis, sorting (mergesort, insertion sort, quicksort, heapsort, lower bounds on sorting), heaps.
- The class on October 15 will be partly a review class.
- Prepare your own questions to ask me!!!

Midterm Exam I

- Probably 4 questions. Assume every topic will be covered.
- I'll hand out a practice test next week.
- Bring class notes and homework assignments.
- No books, no computers, no cellphones/smartphones/tablets, strictly no friends.
- It will count towards 25% of your final grade.

Medians and Order Statistics

- *i*th order statistic: *i*th smallest element of a set of n elements.
- Minimum: first order statistic.
- Maximum: nth order statistic.
- Median: "half-way point" of the set.
- Unique, when n is odd occurs at i = (n+1)/2.
- Two medians when n is even.
- Lower median, at i = n/2.
- Upper median, at i = n/2+1.
- For consistency, "median" will refer to the lower median.

Selection Problem

- Selection problem:
 - Input: A set A of n **distinct** numbers and a number k, with 1 < k < n.
 - Output: the element $x \in A$ that is larger than exactly k-1 other elements of A (the k^{th} order statistics).
- Can be solved in $O(n \log n)$ time. How?
- We will study faster linear-time algorithms.
 - For the special cases when k = 1 and k = n.
 - For the general problem.

Minimum (Maximum)

- Minimum (Maximum) can be found in $\Theta(n)$ time.
- Simply scan all the elements and find the smallest (largest).
- Some applications need to determine both the maximum and minimum of a set of elements.
- Example: Graphics program trying to fit a set of points onto a rectangular display.
- Independent determination of maximum and minimum requires 2n-2 comparisons.
- Can we reduce this number?

Simultaneous Minimum and Maximum

- Maintain minimum and maximum elements seen so far
- Process elements in pairs
- Compare the smaller to the current minimum and the larger to the current maximum
- Update current minimum and maximum based on the outcomes
- No. of comparisons per pair = 3. How?
- No. of pairs $\leq \lfloor n/2 \rfloor$.

Simultaneous Minimum and Maximum

- For odd n: initialize min and max to A[1]. Pair the remaining elements. So, no. of pairs = $\lfloor n/2 \rfloor$
- For even n: initialize min to the smaller of the first pair and max to the larger. So, remaining no. of pairs $=(n-2)/2 < \lfloor n/2 \rfloor$.
- Total no. of comparisons, $C \leq 3 \lfloor n/2 \rfloor$.
- For odd n: $C = 3\lfloor n/2 \rfloor$.
- For even n: C = 3(n-2)/2 + 1 (For the initial comparison). $= 3n/2 2 < 3\lfloor n/2 \rfloor$

Finding kthSmallestElement

- Why can't we use a similar method for any order statistics in a linear time?
- The cost of finding the k^{th} order statistic using either of these methods is $\Theta(kn)$. If k is fixed, this is $\Theta(n)$.
- If k is not fixed, this is not so good. For instance, suppose we want to find the median.
- Then k is about n/2, and the cost would be quadratic.
- Worse than sorting the array...
- Even using heaps won't do better than sorting the array for finding the median.

General Selection Problem

- Find the *i*th order statistics.
- Seems more difficult than Minimum or Maximum.
- Yet, has solutions with same asymptotic complexity as Minimum and Maximum.
- We will study an algorithm for the general problem with expected linear-time complexity (independent of k).
- A second algorithm, whose worst-case complexity is linear, can be found in the text.

General Selection Problem

- Modeled after randomized quicksort.
- Exploits the abilities of Randomized-Partition (RP).
- It uses Partition repeatedly, except that at each step, we only have to use recursion on one side of the partitioned set.
- We hope that in the "average case", we recurse on a subarray that is about half the size of the previous subarray.
- Then the total cost will be the cost of the partitions, which will be roughly some constant times

$$n+\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\cdots=2n$$

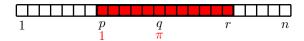
• So the total cost on average should be O(n).

Randomized Select

Algorithm 1 RandomizedSelect(A,p,r,i)

```
1: if p = r then
 2: return A[p]
 3: end if
 4: q \leftarrow RandomizedPartition(A, p, r)
 5: \pi \leftarrow q - p + 1
 6: if i = \pi then
 7: return A[q]
 8: else
9: if i < \pi then
        return RandomizedSelect(A, p, q - 1, i)
10:
   end if
11:
12: else
      return RandomizedSelect(A, q + 1, r, i - \pi)
13:
14: end if
```

Randomized Select



Notation used in the algorithm RandomizedSelect:

- p, q, and r are indices in the original array A.
- π is the 1-based index of the pivot A[q] in the subarray $A[p \dots r]$. (Be careful π here is used to denote just an ordinary variable.

Analysis

We see that Randomized-Select is divided into 3 cases:

- **1** $\pi < i$, so we search for the $(i \pi)^{th}$ element in A[q+1..r]
- ② The pivot $\pi = i$. We finish and exit.
- **3** $\pi > i$, so we search for the i^{th} element in A[p..q-1].

Analysis

- Worst-case Complexity:
 - $\Theta(n^2)$ As we could get unlucky and always recurse on a subarray that is only one element smaller than the previous subarray.
- Average-case Complexity:
 - $\Theta(n)$ Intuition: Because the pivot is chosen at random, we expect that we get rid of half of the list each time we choose a random pivot q.
- Why $\Theta(n)$ and not $\Theta(nlogn)$?

Average Runtime Analysis

- Denote the average runtime of RandomizedSelect(A,1,n,i) by C(n,i).
- We will find an upper bound for C(n, i):
- $T(n) = \max\{C(n, i) : 1 \le i \le n\}.$
- That is, T(n) is the worst average-case time of computing any i^{th} element of an array of size n using RandomizedSelect.
- We will prove that T(n) = O(n).
- First of all the cost of partition is O(n), so we can bound it by a*n for some a.

Average Runtime Analysis

Therefore:

$$\begin{split} &C(n,i) \leq an + \frac{1}{n} \left(\sum_{\pi=1}^{i-1} C(n-\pi,i-\pi) + \sum_{\pi=i+1}^{n} C(\pi-1,i) \right) \\ &\leq an + \frac{1}{n} \left(\sum_{\pi=1}^{i-1} T(n-\pi) + \sum_{\pi=i+1}^{n} T(\pi-1) \right) \\ &\leq \max \{ an + \frac{1}{n} \left(\sum_{\pi=1}^{i-1} T(n-\pi) + \sum_{\pi=i+1}^{n} T(\pi-1) \right) : 1 \leq i \leq n \} \\ &= an + \max \{ \frac{1}{n} \left(\sum_{\pi=1}^{i-1} T(n-\pi) + \sum_{\pi=i+1}^{n} T(\pi-1) \right) : 1 \leq i \leq n \} \end{split}$$

Average Runtime Analysis – Explanation

- The call to RandomizedSelect has two parts: The partition which is the *an* part, and the recursive call whose cost varies depending on the location of the pivot which we denote π .
- We assume that the pivot is equally likely to wind up in any of the n positions in the array, and we average over all those n possibilities.
- That accounts for the factor $\frac{1}{n}$ just outside the big parenthesized term on the right-hand side.
- Inside the parentheses is the sum of all the possibilities that can happen.
- The first term is if the pivot falls before i, the second term is if the pivot falls after i.
- In the third case (where the pivot is exactly i) we just end the run...

Average Runtime Analysis – Explanation (Cont.)

- Once we have taken the maximum over i in the last line, we note that the final right-hand side is actually independent of i.
- Therefore since for each i, C(n, i) on the left-hand side is \leq this expression, the maximum of them all is as well.
- That is, we can take the maximum over i of the left-hand side, (using the previous equation) and get a term which we will use for proof by induction.

$$\mathcal{T}(\textit{n}) \leq \textit{an} + \max\{\frac{1}{\textit{n}} \left(\sum_{\pi=1}^{i-1} \mathcal{T}(\textit{n} - \pi) + \sum_{\pi=i+1}^{\textit{n}} \mathcal{T}(\pi-1) \right) : 1 \leq \textit{i} \leq \textit{n}\}$$

- Base case: We can arrange that this is true for n=2 by making sure (when we finally figure out an appropriate value for C) that $C \ge a$.
- Prove that the inductive hypothesis remains true for k = n. We have two things we can use:
 - the inductive hypothesis which we can assume is true for $1 \le k < n$
 - the recursive inequality above.

We start with the recursive inequality:

$$\begin{split} T(n) & \leq an + \max\{\frac{1}{n}\left(\sum_{\pi=1}^{i-1}T(n-\pi) + \sum_{\pi=i+1}^{n}T(\pi-1)\right): 1 \leq i \leq n\} \\ & \leq an + \max\{\frac{C}{n}\left(\sum_{\pi=1}^{i-1}(n-\pi) + \sum_{\pi=i+1}^{n}(\pi-1)\right): 1 \leq i \leq n\} \\ & = an + \max\{\frac{C}{n}\left((i-1)n - \frac{(i-1)i}{2} + \frac{(n-1)n}{2} - \frac{(i-1)i}{2}\right): 1 \leq i \leq n\} \\ & = an + \max\{\frac{C}{n}\left((i-1)n - (i-1)i + \frac{(n-1)n}{2}\right): 1 \leq i \leq n\} \end{split}$$

- We have to find the maximum of $(i-1)n-(i-1)i=-i^2+(n+1)i-n$ between i=1 and i=n.
- This is the kind of thing we've seen before: this is a concave function of i.
- in fact, it's an "upside-down parabola" and so its maximum occurs where the derivative is 0.
- The derivative is simply -2i + (n+1) and this is 0 when $i = \frac{n+1}{2}$.
- So the maximum value of the expression (i-1)n (i-1)i, which is also (i-1)(n-i), is

$$\left(\frac{n+1}{2}-1\right)\left(n-\frac{n+1}{2}\right) = \frac{n-1}{2}\frac{n-1}{2} = \frac{(n-1)^2}{4}$$

So we have

$$T(n) \le an + \frac{C}{n} \left(\frac{(n-1)^2}{4} + \frac{(n-1)n}{2} \right)$$

$$= an + \frac{C}{n} \left(\frac{n^2 - 2n + 1}{4} + \frac{n^2 - n}{2} \right)$$

$$= an + \frac{C}{n} \left(\frac{3n^2}{4} - n + \frac{1}{4} \right)$$

$$= an + C \left(\frac{3n}{4} - 1 + \frac{1}{4n} \right)$$

$$\le an + C \frac{3n}{4} \qquad \text{for } n \ge 1$$

$$= \left(a + \frac{3}{4}C \right) n$$

So we can fix C once and for all so that

- C > a, and
- $a + (3/4)C \le C$

(for instance, C = 4a would work), then we get $T(n) \le Cn$ and we are done.