CS624 - Analysis of Algorithms

Medians and Order Statistics

October 15, 2025

Nurit Haspel CS624 - Analysis of Algorithms

Midterm Exam |

@ The midterm exam will take place on Monday, October 20, in
class.

o Covered material: Induction, runtime analysis, sorting
(mergesort, insertion sort, quicksort, heapsort, lower bounds
on sorting), heaps.

@ The class on October 15 will be partly a review class.

@ Prepare your own questions to ask me!!!

Nurit Haspel CS624 - Analysis of Algorithms

Midterm Exam |

Probably 4 questions. Assume every topic will be covered.
I'll hand out a practice test next week.

Bring class notes and homework assignments.

e 6 o6 o

No books, no computers, no cellphones/smartphones/tablets,
strictly no friends.

It will count towards 25% of your final grade.

Nurit Haspel CS624 - Analysis of Algorithms

Medians and Order Statistics

th smallest element of a set of n elements.

ith order statistic: i
Minimum: first order statistic.

Maximum: n® order statistic.

Median: “half-way point” of the set.

Unique, when n is odd — occurs at i = (n+1)/2.
Two medians when n is even.

Lower median, at i = n/2.

Upper median, at i = n/2+1.

For consistency, " median” will refer to the lower median.

Nurit Haspel CS624 - Analysis of Algorithms

Selection Problem

@ Selection problem:
o Input: A set A of n distinct numbers and a number k, with
1< k<n.
o Output: the element x € A that is larger than exactly k-1
other elements of A (the k" order statistics).
@ Can be solved in O(nlog n) time. How?
o We will study faster linear-time algorithms.

o For the special cases when k = 1 and k = n.
e For the general problem.

Nurit Haspel CS624 - Analysis of Algorithms

Minimum (Maximum)

@ Minimum (Maximum) can be found in ©(n) time.
@ Simply scan all the elements and find the smallest (largest).

@ Some applications need to determine both the maximum and
minimum of a set of elements.

o Example: Graphics program trying to fit a set of points onto a
rectangular display.

@ Independent determination of maximum and minimum
requires 2n-2 comparisons.

@ Can we reduce this number?

Nurit Haspel CS624 - Analysis of Algorithms

Simultaneous Minimum and Maximum

@ Maintain minimum and maximum elements seen so far
@ Process elements in pairs

o Compare the smaller to the current minimum and the larger
to the current maximum

@ Update current minimum and maximum based on the
outcomes

@ No. of comparisons per pair = 3. How?
e No. of pairs < [n/2].

Nurit Haspel CS624 - Analysis of Algorithms

Simultaneous Minimum and Maximum

e For odd n: initialize min and max to A[1]. Pair the remaining
elements. So, no. of pairs = |n/2]

@ For even n: initialize min to the smaller of the first pair and
max to the larger. So, remaining no. of pairs

=(n—2)/2 < [n/2].

e Total no. of comparisons, C < 3|n/2].

e Forodd n: C =3[n/2].

o For even n: C =3(n—2)/2+ 1 (For the initial comparison).
=3n/2—-2<3|n/2]

Nurit Haspel CS624 - Analysis of Algorithms

Finding k™ SmallestElement

Why can’t we use a similar method for any order statistics in
a linear time?

The cost of finding the k" order statistic using either of these
methods is ©(kn). If k is fixed, this is ©(n).

If k is not fixed, this is not so good. For instance, suppose we
want to find the median.

Then k is about n/2, and the cost would be quadratic.

Worse than sorting the array...

Even using heaps won't do better than sorting the array for
finding the median.

Nurit Haspel CS624 - Analysis of Algorithms

General Selection Problem

Find the it" order statistics.

Seems more difficult than Minimum or Maximum.

Yet, has solutions with same asymptotic complexity as
Minimum and Maximum.

We will study an algorithm for the general problem with
expected linear-time complexity (independent of k).

@ A second algorithm, whose worst-case complexity is linear, can
be found in the text.

Nurit Haspel CS624 - Analysis of Algorithms

General Selection Problem

@ Modeled after randomized quicksort.
e Exploits the abilities of Randomized-Partition (RP).

o It uses Partition repeatedly, except that at each step, we only
have to use recursion on one side of the partitioned set.

o We hope that in the “average case”, we recurse on a subarray
that is about half the size of the previous subarray.

@ Then the total cost will be the cost of the partitions, which
will be roughly some constant times

+i+ 240y 2
n — — — o= 2n
2438

So the total cost on average should be O(n).

Nurit Haspel CS624 - Analysis of Algorithms

Randomized Select

Algorithm 1 RandomizedSelect(A,p,r,i)

1:

10:
11:
12:
13:
14:

if p = r then
return A[p]

2
3. end if

4: q < RandomizedPartition(A, p, r)
5 m+—qg—p+1

6:
.
8
9

if i =7 then
return A[q]

. else

if i < 7 then
return RandomizedSelect(A, p,q — 1,1)
end if
else
return RandomizedSelect(A,q+ 1,r,i —)
end if

Nurit Haspel CS624 - Analysis of Algorithms

Randomized Select

Notation used in the algorithm RandomizedSelect:
@ p, g, and r are indices in the original array A.

o 7 is the 1-based index of the pivot A[g] in the subarray
Alp...r]. (Be careful = here is used to denote just an
ordinary variable.

Nurit Haspel CS624 - Analysis of Algorithms

We see that Randomized-Select is divided into 3 cases:
@ 7 < i, so we search for the (i —)" element in A[q+1..r]
@ The pivot m = i. We finish and exit.
© 7 > i, so we search for the i*" element in A[p..g-1].

Nurit Haspel CS624 - Analysis of Algorithms

o Worst-case Complexity:

o ©(n?) — As we could get unlucky and always recurse on a
subarray that is only one element smaller than the previous
subarray.

o Average-case Complexity:

o ©(n) — Intuition: Because the pivot is chosen at random, we
expect that we get rid of half of the list each time we choose a
random pivot q.

e Why ©(n) and not ©(nlogn)?

Nurit Haspel CS624 - Analysis of Algorithms

Average Runtime Analysis

Denote the average runtime of RandomizedSelect(A,1,n,i) by
C(n,i).

We will find an upper bound for C(n, i):

T(n) = max{C(n,i):1<i<n}.

That is, T(n) is the worst average-case time of computing
any ith element of an array of size n using RandomizedSelect.
We will prove that T(n) = O(n).

First of all — the cost of partition is O(n), so we can bound it
by a*n for some a.

(]

Nurit Haspel CS624 - Analysis of Algorithms

Average Runtime Analysis

Therefore:
C(n,i)<an+ = (ZCH—TI‘I—W ZCT{'—l >
mT=i+1
<an+ - (ZT(H—W Z T(7T—1>
T=i+1
< max{an+ = (ZTI’I—TI‘ Z Tﬂ'—].) 1<i<n}
T=i+1
1 i—1 n
:an+max{n(;T(n—w)—i—ﬂ;lT(w—1)):lglgn}

Nurit Haspel CS624 - Analysis of Algorithms

Average Runtime Analysis — Explanation

@ The call to RandomizedSelect has two parts: The partition
which is the an part, and the recursive call whose cost varies
depending on the location of the pivot which we denote 7.

@ We assume that the pivot is equally likely to wind up in any of
the n positions in the array, and we average over all those n
possibilities.

@ That accounts for the factor % just outside the big
parenthesized term on the right-hand side.

@ Inside the parentheses is the sum of all the possibilities that
can happen.

@ The first term is if the pivot falls before i, the second term is
if the pivot falls after i.

@ In the third case (where the pivot is exactly i) we just end the
run...

Nurit Haspel CS624 - Analysis of Algorithms

Average Runtime Analysis — Explanation (Cont.)

@ Once we have taken the maximum over i in the last line, we
note that the final right-hand side is actually independent of /.

@ Therefore since for each i, C(n, i) on the left-hand side is <
this expression, the maximum of them all is as well.

@ That is, we can take the maximum over i of the left-hand
side, (using the previous equation) and get a term which we
will use for proof by induction.

T(n) < an+ max{~- <ZTn—7r)—|— Z T(7r—1)> :1<i<n}

T=i+1

Nurit Haspel CS624 - Analysis of Algorithms

Average Runtime Analysis — Proof by Induction

o Base case: We can arrange that this is true for n = 2 by
making sure (when we finally figure out an appropriate value
for C) that C > a.

@ Prove that the inductive hypothesis remains true for k = n.
We have two things we can use:

o the inductive hypothesis which we can assume is true for
1<k<n
e the recursive inequality above.

Nurit Haspel CS624 - Analysis of Algorithms

Average Runtime Analysis — Proof by Induction

We start with the recursive inequality:

i—1

T(n)§an+max{r17<z n—7r+z w—l):lgign}

=1 =i+1
-1 n

< an + max{— Z(n—w (77—1)):1<i<n}

(7r/+1
:an-i—max{i(l—l)n '_1) +("_21)"—(i_21)i>:1§i§n}
an+max{i<ll n—(i—1)i +(n—21)n> :1<i<n}

Nurit Haspel CS624 - Analysis of Algorithms

Average Runtime Analysis — Proof by Induction

@ We have to find the maximum of
(i—1)n—(i—1)i=—i>+(n+1)i — n between i = 1 and
i =n.

@ This is the kind of thing we've seen before: this is a concave
function of /.

@ in fact, it's an “upside-down parabola” — and so its maximum
occurs where the derivative is 0.

@ The derivative is simply -2i + (n+1) and this is 0 when

_ n+l
I—72 .

@ So the maximum value of the expression (i —1)n — (i — 1)/,
which is also (i — 1)(n— 1), is

<n+1 1)(n+1> n—1n—1 (n—1)?
- n— = =
2 2 2 2 4

Nurit Haspel CS624 - Analysis of Algorithms

Average Runtime Analysis — Proof by Induction

So we have
C/(n=1)2 (n—1)n
< —
T(”)—a”+n(4 2 >
C/n>=2n+1 n?2—n
_a”+F(4 2)
C /3n° 1
=ant (G-t g)
3n 1
—an+C(I—1+E)
<an—|—C3—,7 forn>1
3
—(a—f-ZC)n

Nurit Haspel CS624 - Analysis of Algorithms

Average Runtime Analysis — Proof by Induction

So we can fix C once and for all so that

o C >4 and

e a+(3/4)C<C
(for instance, C = 4a would work), then we get T(n) < Cn and we
are done.

Nurit Haspel CS624 - Analysis of Algorithms

