CS624 - Analysis of Algorithms

Binary Search Trees

October 6, 2025

Graphs and Paths – Definitions

Definition (Path)

- A path in a graph is a sequence $v_0, v_1, v_2, ..., v_n$ where each v_j is a vertex in the graph and where for each i, v_i and v_{i+1} are joined by an edge. To make things simple, we insist that any path contain at least one edge.
- Usually we write $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n$ to denote a path.
- A path in a graph is simple iff it contains no vertex more than once.

Graphs and Paths – Definitions

Definition (Loop)

- A loop in a graph is a path which begins and ends at the same vertex.
- A loop $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is simple iff
 - \bullet $k \geq 3$ (that is, there are at least 4 vertices on the path), and
 - ② it contains no vertex more than once, except of course for the first and last vertices, which are the same, and
 - 3 That (first and last) vertex occurs exactly twice.

Graphs and Paths – Definitions

Definition (Tree)

- A rooted tree is a tree with a distinguished vertex, which we call the root.
- We will denote the root by r.
- If T is a rooted tree with root r, if x and y are vertices in T
 (and either or both of them might be r) and there is a simple
 path from r through x to y, we say that x is an ancestor of y
 and y is a descendant of x.
- If the part of the path from x to y consists of exactly one edge, we say that x is the parent of y and y is a child of x.

Note that a vertex is both an ancestor and a descendant of itself. But a vertex cannot be its own parent.

Binary search trees (BST's)

Definition

A binary search tree is a binary tree with each node containing some data, some of which is a key. For each node x: If y is a node on the left of x, $key[y] \le key[x]$. If y is a node on the right of x, $key[y] \ge key[x]$.

Reminder, tree traversal (any binary tree):

- Preorder Visit the node. Then traverse its children, left-to-right.
- Inorder Traverse the left child. Then visit the node. Then traverse the right child.
- Postorder Traverse the children, left-to-right. Then visit the node.

Pre/In/Postorder Walks

Algorithm1Preorder-Tree-Walk(x)

- 1: if $x \neq nil$ then
- 2: visit(x)
- 3: Preorder-Tree-Walk(x. left)
- 4: Preorder-Tree-Walk(x. right)
- 5: end if

Algorithm 2 Inorder-Tree-Walk(x)

- 1: if $x \neq nil$ then
- 2: Inorder-Tree-Walk(x. left)
- 3: visit(x)
- 4: Inorder-Tree-Walk(x. right)
- 5: end if

Algorithm 3 Postorder-Tree-Walk(x)

- 1: if $x \neq nil$ then
- 2: Postorder-Tree-Walk(x. left)
- 3: Postorder-Tree-Walk(x. right)
- 4: visit(x)
- 5: end if

Pre/In/Postorder runtime

Theorem

If x is the root of a binary tree with n nodes, then each of the above traversals takes $\Theta(n)$ time.

Proof.

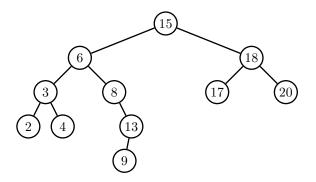
Let us define:

- $c = \text{time for the test } x \neq nil$
- v = time for the call to visit x
- T(k) = time for the call to traverse a tree with k nodes

Then certainly we have

- T(0) = c and if the tree with n nodes has a right child with k nodes (so its left child must have n k 1 nodes), then
- T(n) = c + T(k) + T(n k 1) + vWe can show that T(n) = (2c + v)n + c

BST – Example



Operations on BST – Search

Recursive version

Algorithm 4 TreeSearch(x,k)

1: if
$$x = nil$$
 or $k = key[x]$ then

- 2: return x
- 3: end if
- 4: if k < key[x] then
- 5: **return** TreeSearch(left[x], k)
- 6: else
- 7: **return** TreeSearch(right[x], k)
- 8: end if

Iterative version

Algorithm 5 TreeSearch(x,k)

1: while $x \neq nil$ and $k \neq key[x]$ do

- 2: **if** k < key[x] **then**
- 3: $x \leftarrow left[x]$
- 4: else
- 5: $x \leftarrow right[x]$
- 6: end if
- 7: end while
- 8: return x

The running time is O(h), where h is the height of the tree.

Operations on BST – Minimum and Maximum

Algorithm 6 TreeMinimum(x)

1: while $left[x] \neq nil$ do

2: $x \leftarrow left[x]$

3: end while

4: return X

Algorithm 7 TreeMaximum(x)

1: while $right[x] \neq nil$ do

2: $x \leftarrow right[x]$

3: end while

4: **return** *X*

The running time is O(h), where h is the height of the tree.

Operations on BST – Successor and Predecessor

Algorithm 8 TreeSuccessor(x)

```
1: if right[x] \neq nil then
2: return TreeMinimum(right[x])
3: end if
4: y \leftarrow p[x]
5: while y \neq nil and x == right[y] do
6: x \leftarrow y
7: y \leftarrow p[x]
8: end while
9: return y
```

- The running time of TreeSuccessor on a tree of height h is again O(h), since the algorithm consists on following a path from a node to its successor, and the maximum path length is h.
- What happens when we apply this procedure to the node in the figure above whose key is 20?

Runtime of Tree Procedures

TreePredecessor runs in a similar fashion with a similar running time. Therfore we can state the following:

Theorem

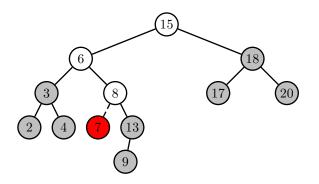
The dynamic-set operations Search, Minimum, Maximum, Successor, and Predecessor can be made to run in O(h) time on a binary search tree of height h.

Operations on BST – Insert

Algorithm 9 TreeInsert(T,z)

```
1: y \leftarrow nil
2: x \leftarrow Root[T]
 3: while x \neq nil do
4:
     y \leftarrow x
5:
    if key[z] < key[x] then
6: x \leftarrow left[x]
7: else
8:
    x \leftarrow right[x]
9.
    end if
10: end while
11: p[z] \leftarrow y
12: if y == nil (This can only happen if the tree T was empty.) then
13:
        Root[T] \leftarrow z
14: else
15:
    if key[z] < key[y] then
16: left[y] \leftarrow z
17:
        end if
18: else
19:
        right[y] \leftarrow z
20: end if
```

Insert Example

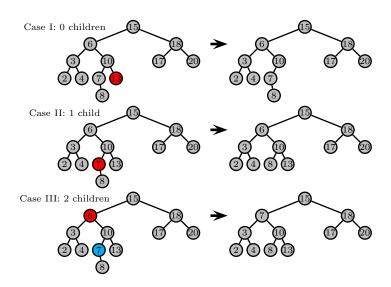


Obviously, Insert runs in O(h) time on a tree of height h

Operations on BST – Delete

- Deleting a node is somewhat more complicated, since if the node is buried within the tree, we will have to move some of the other nodes around.
- Nevertheless, the idea is quite simple.
- There are three possible cases we need to consider when deleting a node d
 - ① d is a leaf.
 - d has one child.
 - d has two children.

Operations on BST – Delete



BST Delete Case by Case

- Case I d is a leaf. This case is trivial. Just delete the node.
 This amounts to figuring out which child it is of its parent,
 and making the corresponding child pointer nil.
- Case II: d has one child. In this case, delete d and "splice" its child to its parent – that is, make the parent's child pointer that formerly pointed to d now point to d's child, and make that child's parent pointer now point to d's parent.
- Case III: d has two children. In this case we can't simply
 move one of the children of d into the position of d. What we
 need to do is find d's successor and replace d with it. Then
 delete d's successor. Since the successor has at most one
 child (why?) then we revert to case I or II.

Expected Cost of Building a BST

An algorithm for building a binary search tree from an array A[1..n]:

Algorithm 10 BuildBST(A)

- 1: Create Empty Tree
- 2: **for** i = 1...n **do**
- 3: TreeInsert(A[i])
- 4: end for
 - What is the runtime?
 - Worst case array already sorted quadratic.
 - Best case looks like $O(n \log n)$.
 - What does it remind us of?

Modified Version of Partition

- $pivot \leftarrow A[p]$
- Let L be the sequence of elements of A[p+1..q] that are less than pivot in the order they appear in A
- Let U be the sequence of elements of A[p+1..q] that are greater than pivot in the order they appear in A
- Rearrange the elements in A[p..q] so that they appear like this:

 This may require more time than the original partition but not asymptotically more.

Exercise

- Show that the comparisons needed to build a BST from an array A[1..n] are exactly the same comparisons needed to do quicksort on the array, using ModifiedPartition.
- **Hint:** The comparisons in quicksort are against the pivot elements and the successive pivot elements are the successive elements added to the BST.

Runtime for Constructing a BST

- We know that the average runtime for quicksort is $\Theta(nlogn)$.
- What is the "average run time" for building a BST?
- It is the average over running on all possible permutations of the input array.
- This is exactly what we get with randomized quicksort.

$\mathsf{Theorem}$

The average runtime for constructing a BST is $\Theta(nlogn)$.

Runtime for Searching a BST

- The average search time in a BST is h, the height of a tree.
- What is the average height of a BST?
- We know the search time is the depth of a node.
- Which is the number of comparisons we make when inserting the node into the tree.

Runtime for Searching a BST

- We see that the total expected number of comparisons is O(nlogn).
- So the average number of comparisons is O(logn) per node.
- The average cost for search in a randomly build BST is therefore O(logn).
- There may be longer paths in a linear tree the average search time is O(n).
- However, the average height of a randomly build BST is O(logn).

Runtime for Searching a BST

- Let X_n be a random variable whose value is the height of a binary search tree on n keys
- Let P_n be the set of all permutations of those n keys. (So the number of elements of P_n is n!)
- Let π to denote a permutation in P_n . X_n is actually a function on P_n .
- Its value $X_n(\pi)$ when applied to a permutation $\pi \in P_n$ is the height of the binary search tree built from that permutation π
- We want to find $E(X_n)$, the expectation of X_n .
- This is by definition $\sum_{\pi \in P_n} p(\pi) X_n(\pi)$ where $p(\pi)$ denotes the probability of the permutation π .
- Assuming that all permutations have equal probability, $p(\pi) = \frac{1}{n!}$ for all π , and so $E(X_n) = \frac{1}{n!} \sum_{\pi \in P_n} X_n(\pi)$

Note on Distribution

If A and B are two random variables on the same space P_n , then

$$E(A+B) = \sum_{\pi \in P_n} p(\pi) (A(\pi) + B(\pi))$$
$$= \sum_{\pi \in P_n} p(\pi) A(\pi) + \sum_{\pi \in P_n} p(\pi) B(\pi)$$
$$= E(A) + E(B)$$

Note that $\max\{A, B\}$ is also a random variable on P_n – its value at π is just $\max\{A(\pi), B(\pi)\}$. And we have the useful inequality

$$E(\max\{A, B\}) = \sum_{\pi \in P_n} p(\pi) \max\{A(\pi), B(\pi)\}$$

$$\leq \sum_{\pi \in P_n} p(\pi) (A(\pi) + B(\pi))$$

$$= E(A + B) = E(A) + E(B)$$

- Consider a permutation π . The root of the tree will be the first element of π .
- Suppose the root has position *k* in the sorted list of keys.
- That means that there will be k-1 keys less than it and n-k keys greater than it.
- So the left subtree will have k-1 elements and the right subtree will have n-k elements.
- Those elements are also chosen randomly from sets of size k-1 and n-k respectively, so we have

$$X_n(\pi) = 1 + \max\{X_{k-1}(\pi), X_{n-k}(\pi)\}$$

• This is our fundamental recursion.

• Since each value of k is chosen with the same probability (that probability being $\frac{1}{n}$), we have

$$E(X_n) = \sum_{k=1}^n \frac{1}{n} E(1 + \max\{X_{k-1}, X_{n-k}\})$$

- An effective way to estimate it would be to set $Y_n = 2^{X_n}$.
- So Y_n is itself a random variable defined on the set P whose value on the permutation π is $Y_n(\pi) = 2^{X_n(\pi)}$
- At first there is no intuitive significance to the reason for doing this. It's just that we can do better with the mathematics that way.
- Compute $E(Y_n)$ and use this to get a bound on $E(X_n)$.
- This step is also somewhat tricky if you haven't seen it before, but it is a general technique.

$$\begin{split} Y_n(\pi) &= 2^{X_n(\pi)} = 2^{1 + \max\{X_{k-1}(\pi), X_{n-k}(\pi)\}} \\ &= 2 \cdot 2^{\max\{X_{k-1}(\pi), X_{n-k}(\pi)\}} = 2 \cdot \max\{2^{X_{k-1}(\pi)}, 2^{X_{n-k}(\pi)}\} \\ &= 2 \cdot \max\{Y_{k-1}(\pi), Y_{n-k}(\pi)\} \end{split}$$

Since each value of k is chosen with probability $\frac{1}{n}$:

$$E(Y_n) = \sum_{k=1}^n \frac{1}{n} \cdot 2E(\max\{Y_{k-1}, Y_{n-k}\}) = \frac{2}{n} \sum_{k=1}^n E(\max\{Y_{k-1}, Y_{n-k}\})$$

$$\leq \frac{2}{n} \sum_{k=1}^n (E(Y_{k-1}) + E(Y_{n-k}))$$

Each term is counted twice so we can simplify to get this:

$$E(Y_n) \le \frac{4}{n} \sum_{k=1}^n E(Y_{k-1}) = \frac{4}{n} \sum_{k=0}^{n-1} E(Y_k)$$

It is more convenient to use a strict equality, rather than an inequality. It turns out that we can assume this to be the case since we're really only concerned with an upper bound.

Lemma

If f and g are two functions such that

$$f(0) = g(0) \tag{1}$$

$$f(n) \le \frac{4}{n} \sum_{k=0}^{n-1} f(k)$$
 (2)

$$g(n) = \frac{4}{n} \sum_{k=0}^{n-1} g(k)$$
 (3)

then $f(k) \leq g(k)$ for all $k \geq 1$.

Proof.

We'll prove this by induction. The inductive hypothesis is that $f(k) \leq g(k)$ for all k < n. We know that this statement is true for n = 1 by the equation above. The inductive step is then to show that this statement remains true for k = n. To show this, we just compute as follows:

$$f(n) \le \frac{4}{n} \sum_{k=0}^{n-1} f(k)$$

 $\le \frac{4}{n} \sum_{k=0}^{n-1} g(k) = g(n)$

- Based on this, we can assume that $E(Y_n) = \frac{4}{n} \sum_{k=0}^{n-1} E(Y_k)$.
- because any upper bound we obtain for $E(Y_n)$ from this identity will also be an upper bound for the "real" $E(Y_n)$.
- This is a similar trick to the one we used in deriving the average case running time of Quicksort.
- We can do something very similar here, although it is a little more complicated:

•
$$E(Y_{n+1}) = \frac{4}{n+1} \sum_{k=0}^{n} E(Y_k)$$
 and $E(Y_n) = \frac{4}{n} \sum_{k=0}^{n-1} E(Y_k)$

We get rid of the denominators:

•
$$(n+1)E(Y_{n+1}) = 4\sum_{k=0}^{n} E(Y_k)$$

•
$$nE(Y_n) = 4 \sum_{k=0}^{n-1} E(Y_k)$$



Now let us subtract and get:

$$(n+1)E(Y_{n+1}) - nE(Y_n) = 4E(Y_n)$$

- $(n+1)E(Y_{n+1}) = (n+4)E(Y_n)$
- Divide both sides by (n+1)(n+4). We get $\frac{E(Y_{n+1})}{n+4} = \frac{E(Y_n)}{n+1}$.
- If you look at it closely for a little while, you will see that if we now divide each side by (n+2)(n+3), we will get something nice: $\frac{E(Y_{n+1})}{(n+4)(n+3)(n+2)} = \frac{E(Y_n)}{(n+3)(n+2)(n+1)}$.

- And so if we define $g(n) = \frac{E(Y_n)}{(n+3)(n+2)(n+1)}$
- Then we have just derived the fact that g(n+1) = g(n)
- In other words, g(n) is some constant. Call it c.
- Then we have $E(Y_n) = c(n+3)(n+2)(n+1) = O(n^3)$
- We are not done yet! We have to find $E(X_n)$

- We know that there is a constant C>0 and a number $n_0\geq 0$ such that for all $n\geq n_0$, $E(Y_n)\leq Cn^3$. Hence for all $n\geq n_0$, $2^{E(X_n)}\leq E(2^{X_n})=E(Y_n)\leq Cn^3$
- Taking the logarithm of both sides we get $E(X_n) \le \log_2 C + 3 \log_2 n = O(\log n)$
- In other words the expected height of a randomly build binary search tree is $O(\log n)$.