
CS624 - Analysis of Algorithms

Binary Search Trees

October 6, 2025

Nurit Haspel CS624 - Analysis of Algorithms



Graphs and Paths – Definitions

Definition (Path)

A path in a graph is a sequence v0, v1, v2, ..., vn where each vj
is a vertex in the graph and where for each i, vi and vi+1 are
joined by an edge. To make things simple, we insist that any
path contain at least one edge.

Usually we write v0 → v1 → v2 → ...→ vn to denote a path.

A path in a graph is simple iff it contains no vertex more than
once.

Nurit Haspel CS624 - Analysis of Algorithms



Graphs and Paths – Definitions

Definition (Loop)

A loop in a graph is a path which begins and ends at the
same vertex.

A loop v0 → v1 → v2 → ...→ vk is simple iff
1 k ≥ 3 (that is, there are at least 4 vertices on the path), and
2 it contains no vertex more than once, except of course for the

first and last vertices, which are the same, and
3 That (first and last) vertex occurs exactly twice.

Nurit Haspel CS624 - Analysis of Algorithms



Graphs and Paths – Definitions

Definition (Tree)

A rooted tree is a tree with a distinguished vertex, which we
call the root.

We will denote the root by r.

If T is a rooted tree with root r, if x and y are vertices in T
(and either or both of them might be r) and there is a simple
path from r through x to y, we say that x is an ancestor of y
and y is a descendant of x.

If the part of the path from x to y consists of exactly one
edge, we say that x is the parent of y and y is a child of x.

Note that a vertex is both an ancestor and a descendant of itself.
But a vertex cannot be its own parent.

Nurit Haspel CS624 - Analysis of Algorithms



Binary search trees (BST’s)

Definition

A binary search tree is a binary tree with each node containing
some data, some of which is a key. For each node x: If y is a node
on the left of x, key [y ] ≤ key [x ]. If y is a node on the right of x,
key [y ] ≥ key [x ].

Reminder, tree traversal (any binary tree):

Preorder – Visit the node. Then traverse its children,
left-to-right.

Inorder – Traverse the left child. Then visit the node. Then
traverse the right child.

Postorder – Traverse the children, left-to-right. Then visit the
node.

Nurit Haspel CS624 - Analysis of Algorithms



Pre/In/Postorder Walks

Algorithm 1 Preorder-Tree-
Walk(x)
1: if x ̸= nil then
2: visit(x)
3: Preorder-Tree-Walk(x. left)
4: Preorder-Tree-Walk(x. right)
5: end if

Algorithm 2 Inorder-Tree-
Walk(x)
1: if x ̸= nil then
2: Inorder-Tree-Walk(x. left)
3: visit(x)
4: Inorder-Tree-Walk(x. right)
5: end if

Algorithm 3 Postorder-Tree-
Walk(x)
1: if x ̸= nil then
2: Postorder-Tree-Walk(x. left)
3: Postorder-Tree-Walk(x. right)
4: visit(x)
5: end if

Nurit Haspel CS624 - Analysis of Algorithms



Pre/In/Postorder runtime

Theorem

If x is the root of a binary tree with n nodes, then each of the
above traversals takes Θ(n) time.

Proof.

Let us define:

c = time for the test x ̸= nil

v = time for the call to visit x

T (k) = time for the call to traverse a tree with k nodes

Then certainly we have

1 T (0) = c and if the tree with n nodes has a right child with k
nodes (so its left child must have n - k - 1 nodes), then

2 T (n) = c + T (k) + T (n − k − 1) + v
We can show that T (n) = (2c + v)n + c

Nurit Haspel CS624 - Analysis of Algorithms



BST – Example

15

6 18

3 8 17 20

2 4 13

9

Nurit Haspel CS624 - Analysis of Algorithms



Operations on BST – Search

Recursive version

Algorithm 4 TreeSearch(x,k)

1: if x = nil or k = key [x ] then
2: return x
3: end if
4: if k < key [x ] then
5: return TreeSearch(left[x ], k)
6: else
7: return TreeSearch(right[x ], k)
8: end if

Iterative version

Algorithm 5 TreeSearch(x,k)

1: while x ̸= nil and k ̸= key [x ] do
2: if k < key [x ] then
3: x ← left[x ]
4: else
5: x ← right[x ]
6: end if
7: end while
8: return x

The running time is O(h), where h is the height of the tree.

Nurit Haspel CS624 - Analysis of Algorithms



Operations on BST – Minimum and Maximum

Algorithm 6 TreeMinimum(x)

1: while left[x ] ̸= nil do
2: x ← left[x ]
3: end while
4: return x

Algorithm 7 TreeMaximum(x)

1: while right[x ] ̸= nil do
2: x ← right[x ]
3: end while
4: return x

The running time is O(h), where h is the height of the tree.

Nurit Haspel CS624 - Analysis of Algorithms



Operations on BST – Successor and Predecessor

Algorithm 8 TreeSuccessor(x)

1: if right[x ] ̸= nil then
2: return TreeMinimum

(
right[x ]

)
3: end if
4: y ← p[x ]
5: while y ̸= nil and x == right[y ] do
6: x ← y
7: y ← p[x ]
8: end while
9: return y

The running time of TreeSuccessor on a tree of height h is again
O(h), since the algorithm consists on following a path from a node
to its successor, and the maximum path length is h.

What happens when we apply this procedure to the node in the
figure above whose key is 20?

Nurit Haspel CS624 - Analysis of Algorithms



Runtime of Tree Procedures

TreePredecessor runs in a similar fashion with a similar running
time. Therfore we can state the following:

Theorem

The dynamic-set operations Search, Minimum, Maximum,
Successor, and Predecessor can be made to run in O(h) time on a
binary search tree of height h.

Nurit Haspel CS624 - Analysis of Algorithms



Operations on BST – Insert

Algorithm 9 TreeInsert(T,z)
1: y ← nil
2: x ← Root[T ]
3: while x ̸= nil do
4: y ← x
5: if key [z] < key [x] then
6: x ← left[x]
7: else
8: x ← right[x]
9: end if
10: end while
11: p[z]← y
12: if y == nil (This can only happen if the tree T was empty.) then
13: Root[T ]← z
14: else
15: if key [z] < key [y ] then
16: left[y ]← z
17: end if
18: else
19: right[y ]← z
20: end if

Nurit Haspel CS624 - Analysis of Algorithms



Insert Example

15

6 18

3 8 17 20

2 4 7 13

9

Obviously, Insert runs in O(h) time on a tree of height h

Nurit Haspel CS624 - Analysis of Algorithms



Operations on BST – Delete

Deleting a node is somewhat more complicated, since if the
node is buried within the tree, we will have to move some of
the other nodes around.

Nevertheless, the idea is quite simple.

There are three possible cases we need to consider when
deleting a node d

1 d is a leaf.
2 d has one child.
3 d has two children.

Nurit Haspel CS624 - Analysis of Algorithms



Operations on BST – Delete

Case I: 0 children 15

6 18

3 10 17 20

2 4 7 13

8

15

6 18

3 10 17 20

2 4 7

8

Case II: 1 child 15

6 18

3 10 17 20

2 4 7 13

8

15

6 18

3 10 17 20

2 4 8 13

Case III: 2 children 15

6 18

3 10 17 20

2 4 7 13

8

15

7 18

3 10 17 20

2 4 8 13

Nurit Haspel CS624 - Analysis of Algorithms



BST Delete Case by Case

Case I - d is a leaf. This case is trivial. Just delete the node.
This amounts to figuring out which child it is of its parent,
and making the corresponding child pointer nil.

Case II: d has one child. In this case, delete d and “splice” its
child to its parent – that is, make the parent’s child pointer
that formerly pointed to d now point to d ’s child, and make
that child’s parent pointer now point to d ’s parent.

Case III: d has two children. In this case we can’t simply
move one of the children of d into the position of d . What we
need to do is find d ’s successor and replace d with it. Then
delete d ’s successor. Since the successor has at most one
child (why?) then we revert to case I or II.

Nurit Haspel CS624 - Analysis of Algorithms



Expected Cost of Building a BST

An algorithm for building a binary search tree from an array A[1..n]:

Algorithm 10 BuildBST(A)

1: Create Empty Tree
2: for i = 1...n do
3: TreeInsert(A[i ])
4: end for

What is the runtime?

Worst case – array already sorted – quadratic.

Best case – looks like O(n log n).

What does it remind us of?

Nurit Haspel CS624 - Analysis of Algorithms



Modified Version of Partition

pivot ← A[p]

Let L be the sequence of elements of A[p+1..q] that are less
than pivot in the order they appear in A

Let U be the sequence of elements of A[p+1..q] that are
greater than pivot in the order they appear in A

Rearrange the elements in A[p..q] so that they appear like this:

L pivot U

This may require more time than the original partition but not
asymptotically more.

Nurit Haspel CS624 - Analysis of Algorithms



Exercise

Show that the comparisons needed to build a BST from an
array A[1..n] are exactly the same comparisons needed to do
quicksort on the array, using ModifiedPartition.

Hint: The comparisons in quicksort are against the pivot
elements and the successive pivot elements are the successive
elements added to the BST.

Nurit Haspel CS624 - Analysis of Algorithms



Runtime for Constructing a BST

We know that the average runtime for quicksort is Θ(nlogn).

What is the “average run time” for building a BST?

It is the average over running on all possible permutations of
the input array.

This is exactly what we get with randomized quicksort.

Theorem

The average runtime for constructing a BST is Θ(nlogn).

Nurit Haspel CS624 - Analysis of Algorithms



Runtime for Searching a BST

The average search time in a BST is h, the height of a tree.

What is the average height of a BST?

We know the search time is the depth of a node.

Which is the number of comparisons we make when inserting
the node into the tree.

Nurit Haspel CS624 - Analysis of Algorithms



Runtime for Searching a BST

We see that the total expected number of comparisons is
O(nlogn).

So the average number of comparisons is O(logn) per node.

The average cost for search in a randomly build BST is
therefore O(logn).

There may be longer paths – in a linear tree the average
search time is O(n).

However, the average height of a randomly build BST is
O(logn).

Nurit Haspel CS624 - Analysis of Algorithms



Runtime for Searching a BST

Let Xn be a random variable whose value is the height of a
binary search tree on n keys

Let Pn be the set of all permutations of those n keys. (So the
number of elements of Pn is n!)

Let π to denote a permutation in Pn. Xn is actually a function
on Pn.

Its value Xn(π) when applied to a permutation π ∈ Pn is the
height of the binary search tree built from that permutation π

We want to find E (Xn), the expectation of Xn.

This is by definition
∑

π∈Pn
p(π)Xn(π) where p(π) denotes

the probability of the permutation π.

Assuming that all permutations have equal probability,
p(π) = 1

n! for all π, and so E (Xn) =
1
n!

∑
π∈Pn

Xn(π)

Nurit Haspel CS624 - Analysis of Algorithms



Note on Distribution

If A and B are two random variables on the same space Pn, then

E (A+ B) =
∑
π∈Pn

p(π)
(
A(π) + B(π)

)
=

∑
π∈Pn

p(π)A(π) +
∑
π∈Pn

p(π)B(π)

= E (A) + E (B)

Note that max{A,B} is also a random variable on Pn – its value at
π is just max

{
A(π),B(π)

}
. And we have the useful inequality

E
(
max{A,B}

)
=

∑
π∈Pn

p(π)max
{
A(π),B(π)

}
≤

∑
π∈Pn

p(π)
(
A(π) + B(π)

)
= E (A+ B) = E (A) + E (B)

Nurit Haspel CS624 - Analysis of Algorithms



Expected Height of a BST

Consider a permutation π. The root of the tree will be the
first element of π.

Suppose the root has position k in the sorted list of keys.

That means that there will be k − 1 keys less than it and
n − k keys greater than it.

So the left subtree will have k − 1 elements and the right
subtree will have n − k elements.

Those elements are also chosen randomly from sets of size
k − 1 and n − k respectively, so we have

Xn(π) = 1 + max{Xk−1(π),Xn−k(π)}

This is our fundamental recursion.

Nurit Haspel CS624 - Analysis of Algorithms



Expected Height of a BST

Since each value of k is chosen with the same probability
(that probability being 1

n ), we have

E (Xn) =
n∑

k=1

1
nE

(
1 + max{Xk−1,Xn−k}

)
An effective way to estimate it would be to set Yn = 2Xn .

So Yn is itself a random variable defined on the set P whose
value on the permutation π is Yn(π) = 2Xn(π)

At first there is no intuitive significance to the reason for
doing this. It’s just that we can do better with the
mathematics that way.

Compute E (Yn) and use this to get a bound on E (Xn).

This step is also somewhat tricky if you haven’t seen it before,
but it is a general technique.

Nurit Haspel CS624 - Analysis of Algorithms



Expected Height of a BST

Yn(π) = 2Xn(π) = 21+max{Xk−1(π),Xn−k (π)}

= 2 · 2max{Xk−1(π),Xn−k (π)} = 2 ·max{2Xk−1(π), 2Xn−k (π)}
= 2 ·max{Yk−1(π),Yn−k(π)}

Since each value of k is chosen with probability 1
n
:

E(Yn) =
n∑

k=1

1

n
· 2E

(
max{Yk−1,Yn−k}

)
=

2

n

n∑
k=1

E
(
max{Yk−1,Yn−k}

)
≤ 2

n

n∑
k=1

(
E(Yk−1) + E(Yn−k)

)
Each term is counted twice so we can simplify to get this:

E(Yn) ≤
4

n

n∑
k=1

E(Yk−1) =
4

n

n−1∑
k=0

E(Yk)

Nurit Haspel CS624 - Analysis of Algorithms



Expected Height of a BST

It is more convenient to use a strict equality, rather than an
inequality. It turns out that we can assume this to be the case
since we’re really only concerned with an upper bound.

Lemma

If f and g are two functions such that

f (0) = g(0) (1)

f (n) ≤ 4

n

n−1∑
k=0

f (k) (2)

g(n) =
4

n

n−1∑
k=0

g(k) (3)

then f (k) ≤ g(k) for all k ≥ 1.

Nurit Haspel CS624 - Analysis of Algorithms



Expected Height of a BST

Proof.

We’ll prove this by induction. The inductive hypothesis is that
f (k) ≤ g(k) for all k < n. We know that this statement is true for
n = 1 by the equation above. The inductive step is then to show
that this statement remains true for k = n. To show this, we just
compute as follows:

f (n) ≤ 4

n

n−1∑
k=0

f (k)

≤ 4

n

n−1∑
k=0

g(k) = g(n)

Nurit Haspel CS624 - Analysis of Algorithms



Expected Height of a BST

Based on this, we can assume that E (Yn) =
4
n

n−1∑
k=0

E (Yk).

because any upper bound we obtain for E (Yn) from this
identity will also be an upper bound for the “real” E (Yn).

This is a similar trick to the one we used in deriving the
average case running time of Quicksort.

We can do something very similar here, although it is a little
more complicated:

E (Yn+1) =
4

n+1

n∑
k=0

E (Yk) and E (Yn) =
4
n

n−1∑
k=0

E (Yk)

We get rid of the denominators:

(n + 1)E (Yn+1) = 4
n∑

k=0

E (Yk)

nE (Yn) = 4
n−1∑
k=0

E (Yk)

Nurit Haspel CS624 - Analysis of Algorithms



Expected Height of a BST

Now let us subtract and get:
(n + 1)E (Yn+1)− nE (Yn) = 4E (Yn)

(n + 1)E (Yn+1) = (n + 4)E (Yn)

Divide both sides by (n + 1)(n + 4). We get E(Yn+1)
n+4 = E(Yn)

n+1 .

If you look at it closely for a little while, you will see that if we
now divide each side by (n + 2)(n + 3), we will get something

nice: E(Yn+1)
(n+4)(n+3)(n+2) =

E(Yn)
(n+3)(n+2)(n+1) .

Nurit Haspel CS624 - Analysis of Algorithms



Expected Height of a BST

And so if we define g(n) = E(Yn)
(n+3)(n+2)(n+1)

Then we have just derived the fact that g(n+1) = g(n)

In other words, g(n) is some constant. Call it c .

Then we have E (Yn) = c(n + 3)(n + 2)(n + 1) = O(n3)

We are not done yet! We have to find E (Xn)

Nurit Haspel CS624 - Analysis of Algorithms



Expected Height of a BST

We know that there is a constant C > 0 and a number n0 ≥ 0
such that for all n ≥ n0, E (Yn) ≤ Cn3. Hence for all n ≥ n0,
2E(Xn) ≤ E (2Xn) = E (Yn) ≤ Cn3

Taking the logarithm of both sides we get
E (Xn) ≤ log2 C + 3 log2 n = O(log n)

In other words – the expected height of a randomly build
binary search tree is O(log n).

Nurit Haspel CS624 - Analysis of Algorithms


