CS624 - Analysis of Algorithms

Binary Search Trees

October 6, 2025

Nurit Haspel CS624 - Analysis of Algorithms

Graphs and Paths — Definitions

Definition (Path)

@ A path in a graph is a sequence vy, v1, v2, ..., v, where each v;
is a vertex in the graph and where for each i, v; and v;;; are
joined by an edge. To make things simple, we insist that any
path contain at least one edge.

o Usually we write vo — vi — v» — ... — v, to denote a path.

@ A path in a graph is simple iff it contains no vertex more than
once.

4

Nurit Haspel CS624 - Analysis of Algorithms

Graphs and Paths — Definitions

Definition (Loop)

@ A loop in a graph is a path which begins and ends at the
same vertex.
@ Aloop vg — vi — Vo — ... — v is simple iff
@ k > 3 (that is, there are at least 4 vertices on the path), and
@ it contains no vertex more than once, except of course for the
first and last vertices, which are the same, and
© That (first and last) vertex occurs exactly twice.

A

Nurit Haspel CS624 - Analysis of Algorithms

Graphs and Paths — Definitions

Definition (Tree)

@ A rooted tree is a tree with a distinguished vertex, which we
call the root.

@ We will denote the root by r.

o If T is a rooted tree with root r, if x and y are vertices in T
(and either or both of them might be r) and there is a simple
path from r through x to y, we say that x is an ancestor of y
and y is a descendant of x.

o If the part of the path from x to y consists of exactly one
edge, we say that x is the parent of y and y is a child of x.

Note that a vertex is both an ancestor and a descendant of itself.
But a vertex cannot be its own parent.

Nurit Haspel CS624 - Analysis of Algorithms

Binary search trees (BST's)

Definition

A binary search tree is a binary tree with each node containing
some data, some of which is a key. For each node x: If y is a node
on the left of x, key[y] < key[x]. If y is a node on the right of x,
keyly] > key[x].

Reminder, tree traversal (any binary tree):

@ Preorder — Visit the node. Then traverse its children,
left-to-right.

@ Inorder — Traverse the left child. Then visit the node. Then
traverse the right child.

@ Postorder — Traverse the children, left-to-right. Then visit the
node.

Nurit Haspel CS624 - Analysis of Algorithms

Pre/In/Postorder Walks

Algorithm 1 Preorder-Tree-

Walk(x)
1: if x # nil then
2: visit(x)

3: Preorder-Tree-Walk(x. left) -
4: Preorder-Tree-Walk(x. right) Algorithm 3 Postorder-Tree-

5: end if Walk(x)
1: if x # nil then

2: Postorder-Tree-Walk(x. left)

: 3: Postorder-Tree-Walk(x. right)
Algorithm 2 Inorder-Tree- & visit(x)

Walk(x) 5: end if
1. if x # nil then
2: Inorder-Tree-Walk(x. left)

3: visit(x)
4: Inorder-Tree-Walk(x. right)
5: end if

Nurit Haspel CS624 - Analysis of Algorithms

Pre/In/Postorder runtime

If x is the root of a binary tree with n nodes, then each of the
above traversals takes ©(n) time.

Let us define:
@ ¢ = time for the test x # nil
@ v = time for the call to visit x
o T (k) = time for the call to traverse a tree with k nodes
Then certainly we have
@ T(0) = c and if the tree with n nodes has a right child with k
nodes (so its left child must have n - k - 1 nodes), then
Q@ T(n)=c+T(k)+T(n—k—-1)+v
We can show that T(n) = (2c +v)n+c¢

Ol

V.

Nurit Haspel CS624 - Analysis of Algorithms

BST — Example

Nurit Haspel CS624 - Analysis of Algorithms

Operations on BST — Search

Recursive version lterative version

Algorithm 4 TreeSearch(x,k) Algorithm 5 TreeSearch(x,k)
1: if x = nil or k = key[x] then 1: while x # nil and k # key[x] do
2 re.turn X 2: if k < key[x] then

3: end if 3: x + left[x]

4: if k < key[x] then 4. else

5. return TreeSearch(left[x], k) 5 x < right[x]

6: else 6: endif

7 return TreeSearch(right[x], k) 7: end while

8: end if 8: return x

The running time is O(h), where h is the height of the tree.

Nurit Haspel CS624 - Analysis of Algorithms

Operations on BST — Minimum and Maximum

Algorithm 6 TreeMinimum(x) Algorithm 7 TreeMaximum(x)
1: while left[x] # nil do 1: while right[x] # nil do
2: x < left[x] 2: X < right[x]
3: end while 3: end while
4: return x 4: return x

The running time is O(h), where h is the height of the tree.

Nurit Haspel CS624 - Analysis of Algorithms

Operations on BST — Successor and Predecessor

Algorithm 8 TreeSuccessor(x)

1: if right[x] # nil then

2 return TreeMinimum(right[x])
3: end if

4y« plx]

5: while y # nil and x == right[y] do
6.

7

8

9

X4y

y < plx]
: end while
: return y

@ The running time of TreeSuccessor on a tree of height h is again
O(h), since the algorithm consists on following a path from a node
to its successor, and the maximum path length is h.

@ What happens when we apply this procedure to the node in the
figure above whose key is 207

Nurit Haspel CS624 - Analysis of Algorithms

Runtime of Tree Procedures

TreePredecessor runs in a similar fashion with a similar running
time. Therfore we can state the following:

The dynamic-set operations Search, Minimum, Maximum,
Successor, and Predecessor can be made to run in O(h) time on a
binary search tree of height h.

Nurit Haspel CS624 - Analysis of Algorithms

Operations on BST — Insert

Algorithm 9 Treelnsert(T,z)
Ly < nil
* x < Root[T]
while x # nil do
y X
if key[z] < key[x] then
x < left[x]
else
x < right[x]
end if
10: end while
11: plz] <y
12: if y == nil (This can only happen if the tree T was empty.) then
13: Root[T] «+ z

CRANDO W

14: else

15: if key[z] < key[y] then
16: left[y] «+ z

17: end if

18: else

19: right[y] < z

20: end if

Nurit Haspel CS624 - Analysis of Algorithms

Insert Example

Obviously, Insert runs in O(h) time on a tree of height h

Nurit Haspel CS624 - Analysis of Algorithms

Operations on BST — Delete

@ Deleting a node is somewhat more complicated, since if the
node is buried within the tree, we will have to move some of
the other nodes around.

@ Nevertheless, the idea is quite simple.
@ There are three possible cases we need to consider when
deleting a node d

Q dis a leaf.
@ d has one child.
© d has two children.

Nurit Haspel CS624 - Analysis of Algorithms

Operations on BST — Delete

Case I: 0 children

Nurit Haspel CS624 - Analysis of Algorithms

BST Delete Case by Case

@ Case | - d is a leaf. This case is trivial. Just delete the node.
This amounts to figuring out which child it is of its parent,
and making the corresponding child pointer nil.

o Case Il: d has one child. In this case, delete d and “splice” its
child to its parent — that is, make the parent’s child pointer
that formerly pointed to d now point to d’s child, and make
that child’s parent pointer now point to d's parent.

@ Case lll: d has two children. In this case we can’t simply
move one of the children of d into the position of d. What we
need to do is find d's successor and replace d with it. Then
delete d's successor. Since the successor has at most one
child (why?) then we revert to case | or Il.

Nurit Haspel CS624 - Analysis of Algorithms

Expected Cost of Building a BST

An algorithm for building a binary search tree from an array A[1..n]:

Algorithm 10 BuildBST(A)
1: Create Empty Tree

2: for i =1...ndo
3: Treelnsert(A[i])
4: end for

o What is the runtime?

@ Worst case — array already sorted — quadratic.
o Best case — looks like O(nlog n).

@ What does it remind us of?

Nurit Haspel CS624 - Analysis of Algorithms

Modified Version of Partition

e pivot < Alp]

o Let L be the sequence of elements of A[p+1..q] that are less
than pivot in the order they appear in A

o Let U be the sequence of elements of A[p+1..q] that are
greater than pivot in the order they appear in A

@ Rearrange the elements in A[p..q] so that they appear like this:
L pivot U

@ This may require more time than the original partition but not
asymptotically more.

Nurit Haspel CS624 - Analysis of Algorithms

Exercise

@ Show that the comparisons needed to build a BST from an
array A[1..n] are exactly the same comparisons needed to do
quicksort on the array, using ModifiedPartition.

@ Hint: The comparisons in quicksort are against the pivot
elements and the successive pivot elements are the successive
elements added to the BST.

Nurit Haspel CS624 - Analysis of Algorithms

Runtime for Constructing a BST

o We know that the average runtime for quicksort is ©(nlogn).
@ What is the "average run time" for building a BST?

@ It is the average over running on all possible permutations of
the input array.

@ This is exactly what we get with randomized quicksort.

The average runtime for constructing a BST is ©(nlogn).

Nurit Haspel CS624 - Analysis of Algorithms

Runtime for Searching a BST

@ The average search time in a BST is h, the height of a tree.
@ What is the average height of a BST?
@ We know the search time is the depth of a node.

@ Which is the number of comparisons we make when inserting
the node into the tree.

Nurit Haspel CS624 - Analysis of Algorithms

Runtime for Searching a BST

@ We see that the total expected number of comparisons is
O(nlogn).
@ So the average number of comparisons is O(logn) per node.

@ The average cost for search in a randomly build BST is
therefore O(logn).

@ There may be longer paths — in a linear tree the average
search time is O(n).

@ However, the average height of a randomly build BST is
O(logn).

Nurit Haspel CS624 - Analysis of Algorithms

Runtime for Searching a BST

@ Let X, be a random variable whose value is the height of a
binary search tree on n keys

@ Let P, be the set of all permutations of those n keys. (So the
number of elements of P, is n!)

@ Let 7 to denote a permutation in P,. X, is actually a function
on P,.

o Its value X,(7) when applied to a permutation 7 € P, is the
height of the binary search tree built from that permutation 7

e We want to find E(X,), the expectation of X,,.

o This is by definition > p p(m)X,(7) where p(7) denotes
the probability of the permutation .

@ Assuming that all permutations have equal probability,
p(m) = L forall m, and so E(X,) = & > rep, Xn(T)

Nurit Haspel CS624 - Analysis of Algorithms

Note on Distribution

If A and B are two random variables on the same space P, then

E(A+B) = p(m)(A(m) + B(m))

TEP,

= 3 p@AE + Y p()B()
TEPy TEPy

— E(A) + E(B)

Note that max{A, B} is also a random variable on P, — its value at
7 is just max{A(m), B(m)}. And we have the useful inequality

E(max{A, B}) = Z p(m) max{ A(x), B(r)}

TeP,

< Y p(m)(A(r) + B(7))

TEP,
— E(A+ B) = E(A) + E(B)

Nurit Haspel CS624 - Analysis of Algorithms

Expected Height of a BST

o Consider a permutation w. The root of the tree will be the
first element of .

@ Suppose the root has position k in the sorted list of keys.

@ That means that there will be k — 1 keys less than it and
n — k keys greater than it.

@ So the left subtree will have k — 1 elements and the right
subtree will have n — k elements.

@ Those elements are also chosen randomly from sets of size
k — 1 and n — k respectively, so we have

Xn(m) = 1 4+ max{Xx_1(m), Xn—k(7)}

@ This is our fundamental recursion.

Nurit Haspel CS624 - Analysis of Algorithms

Expected Height of a BST

@ Since each value of k is chosen with the same probability
(that probability being 1), we have

E(X,) = ;;1 %E(l + max{Xk_1, ank})

@ An effective way to estimate it would be to set Y, = 2Xn

@ So Y, is itself a random variable defined on the set P whose
value on the permutation 7 is Y,(7) = 2%(7)

@ At first there is no intuitive significance to the reason for
doing this. It's just that we can do better with the
mathematics that way.

o Compute E(Y}) and use this to get a bound on E(X,).

@ This step is also somewhat tricky if you haven't seen it before,
but it is a general technique.

Nurit Haspel CS624 - Analysis of Algorithms

Expected Height of a BST

Y (m) = 2007 = grrmaxdXe—1(m):Xo (M)}
=2. 2max{Xk_1(7r),Xn_k(7r)} —2. max{QXk—l(“), 2Xn—k(7r)}
=2 max{ Yi—1(7), Yo—k(m)}

Since each value of k is chosen with probability %:

n n

E(Y,) = z% - 2E (max{Yi_1, Ya—i}) = % E (max{Yi—1, Yo—«})
< ST (B + E(Yas)
k=1

Each term is counted twice so we can simplify to get this:

E(Y,) <= ZE(Yk 1 ZE(Yk

Nurit Haspel CS624 - Analysis of Algorithms

Expected Height of a BST

It is more convenient to use a strict equality, rather than an
inequality. It turns out that we can assume this to be the case
since we're really only concerned with an upper bound.

If f and g are two functions such that
f(0) = g(0) (1)

4 n—1
fn) <=3 (k) 2)

k=0

4 n—1
g(n) ==Y (k) ()

k=0

then f(k) < g(k) for all k > 1.

A

Nurit Haspel CS624 - Analysis of Algorithms

Expected Height of a BST

We'll prove this by induction. The inductive hypothesis is that
f(k) < g(k) for all k < n. We know that this statement is true for
n =1 by the equation above. The inductive step is then to show
that this statement remains true for k = n. To show this, we just
compute as follows:

Nurit Haspel CS624 - Analysis of Algorithms

Expected Height of a BST

n—1
o Based on this, we can assume that E(Y,) =2 >~ E(Y).
k=0

@ because any upper bound we obtain for E(Y},) from this
identity will also be an upper bound for the “real” E(Y,).

@ This is a similar trick to the one we used in deriving the
average case running time of Quicksort.

o We can do something very similar here, although it is a little
more complicated:

n n—1
o E(Ypi1) = %Eo E(Yx) and E(Y,) = %Eo E(Yy)

o We get rid of the denominators:

o (n+1)E(Ypi1) = 4;} E(Yi)
o nE(Y,) =45 E(Vi)
k=0

Nurit Haspel CS624 - Analysis of Algorithms

Expected Height of a BST

@ Now let us subtract and get:
(n+1)E(Ynt1) — nE(Yn) = 4E(Yn)
o (n+ 1)E(Yas1) = (n+4)E(Y,)

e Divide both sides by (n+ 1)(n+ 4). We get (njr’j[l) = E,fl/;).
o If you look at it closely for a little while, you will see that if we
now divide each side by (n+ 2)(n+ 3), we will get something
E(Yn+1) E(Yn)
(n+4)(n+3)(n+2) — (n+3)(n+2)(n+1)"

nice:

Nurit Haspel CS624 - Analysis of Algorithms

Expected Height of a BST

_ E(Yn)
— (n+3)(n+2)(n+1)

Then we have just derived the fact that g(n+1) = g(n)

And so if we define g(n)

In other words, g(n) is some constant. Call it c.
Then we have E(Y,) = c(n+3)(n+2)(n+1) = O(n®)
We are not done yet! We have to find E(X,)

Nurit Haspel CS624 - Analysis of Algorithms

Expected Height of a BST

@ We know that there is a constant C > 0 and a number ng > 0
such that for all n > ng, E(Y,) < Cn3. Hence for all n > no,
2E(Xa) < E(2%n) = E(Y,) < Cn®

@ Taking the logarithm of both sides we get
E(X,) < logy C + 3log, n = O(log n)

@ In other words — the expected height of a randomly build
binary search tree is O(log n).

Nurit Haspel CS624 - Analysis of Algorithms

