
CS624 - Analysis of Algorithms

Dynamic Programming

October 27, 2025

Nurit Haspel CS624 - Analysis of Algorithms

Problem – Making Change

Task – buy a cup of coffee (say it costs 63 cents).

You are given an unlimited number of coins of all types
(neglect 50 cents and 1 dollar).

Pay exact change.

What is the combination of coins you’d use?

1 cent 5 cents 10 cents 25 cents

Nurit Haspel CS624 - Analysis of Algorithms

Greedy Thinking – Change Making

Logically, we want to minimize the number of coins.

The problem is then: Count change using the fewest number
of coins – we have 1, 5, 10, 25 unit coins to work with.

The ”greedy” part lies in the order: We want to use as many
large-value coins to minimize the total number.

When counting 63 cents, use as many 25s as fit, 63 = 2(25)
+ 13, then as many 10s as fit in the remainder: 63 = 2(25) +
1(10) + 3, no 5’s fit, so we have 63 = 2(25) + 1(10) + 3(1),
6 coins.

Nurit Haspel CS624 - Analysis of Algorithms

Greedy Algorithms

A greedy person grabs everything they can as soon as possible.

Similarly a greedy algorithm makes locally optimized decisions
that appear to be the best thing to do at each step.

Example: Change-making greedy algorithm for “change”
amount, given many coins of each size:

Loop until change == 0:
Find largest-valued coin less than change, use it.
change = change - coin-value;

Nurit Haspel CS624 - Analysis of Algorithms

Change Making

The greedy method gives the optimal solution for US coinage.

With different coinage, the greedy algorithm doesn’t always
find the optimal solution.

Example of a coinage with an additional 21 cent piece. Then
63 = 3(21), but greedy says use 2 25s, 1 10, and 3 1’s, a total
of 6 coins.

The coin values need to be spread out enough to make greedy
work.

But even some spread-out cases don’t work. Consider having
pennies, dimes and quarters, but no nickels.

Then 30 by greedy uses 1 quarter and 5 pennies, ignoring the
best solution of 3 dimes.

Nurit Haspel CS624 - Analysis of Algorithms

Greedy Algorithms

Greedy algorithms are very popular

They do not always guarantee the optimal solution but they
are often simple and can be used as approximation algorithms
when the exact solution is too hard.

Sometimes they give the optimal solution, as with the US
coins above.

We will visit greedy algorithms later in the course.

For now we need a method that guarantees optimality for any
coin combination.

Nurit Haspel CS624 - Analysis of Algorithms

(Very bad) Recursive Solution

Example: change for 63 cents with coins = {25, 10, 5, 1, 21} no
order required in array.

makeChange(63)

minCoins = 63

loop over j from 1 to 63/2 = 31

thisCoins = makeChange(j) + makeChange(63-j)

if thisCoins < minCoins

minCoins = thisCoins

return minCoins

Lots and lots of redundant calls!

Nurit Haspel CS624 - Analysis of Algorithms

(Very bad) Recursive Solution

T(n) = T(n-1) + T(n-2) + T(n-3) + ... + T(n/2) + ...

Incredibly bad, right?

Nurit Haspel CS624 - Analysis of Algorithms

Better Idea

We know we have 1,5,10,21 and 25.

Therefore, the optimal solution must be the minimum of the
following:

1 (A 1 cent) + optimal solution for 62.
1 (A 5 cent) + optimal solution for 58.
1 (A 10 cent) + optimal solution for 53.
1 (A 21 cent) + optimal solution for 42.
1 (A 25 cent) + optimal solution for 38.
This reduces the number of recursive calls drastically.

Naive implementation still makes lots of redundant calls.

Nurit Haspel CS624 - Analysis of Algorithms

Dynamic Programming Implementation

Idea – hold on to the fact that you only have to look at five
previous solutions

But instead of performing the same calculation over and over
again, save pre-calculated results to an array.

The answer to a large change depends only on results of
smaller calculations, so we can calculate the optimal answer
for all the smaller change and save it to an array.

Then go over the array and minimize on:

change(N) = mink∈K{change(N − k) + 1}
For all K types of coins, in our example K = {1, 5, 10, 21, 25}

Runtime – O(N ∗ K).

Nurit Haspel CS624 - Analysis of Algorithms

Dynamic Programming for Change Problem

public static void makeChange(int [] coins, int differentCoins,

int maxChange, int [] coinsUsed, int [] lastCoin)

{

coinsUsed[0] = 0; lastCoin[0] = 1;

for(int cents = 1; cents <= maxChange; cents++) {

int minCoins = cents;

int newCoin = 1;

for(int j = 0; j < differentCoins; j++) {

if(coins[j] > cents) // Cannot use coin j

continue;

if(coinsUsed[cents - coins[j]] + 1 < minCoins) {

minCoins = coinsUsed[cents - coins[j]] + 1;

newCoin = coins[j];

}

}

coinsUsed[cents] = minCoins;

lastCoin[cents] = newCoin;

}

}

Nurit Haspel CS624 - Analysis of Algorithms

Dynamic Programming

An algorithm design technique for optimization problems: often
minimizing or maximizing.

Like divide and conquer, DP solves problems by combining solutions
to subproblems.

Unlike divide and conquer, subproblems are not independent and
may share subsubproblems,

However, solution to one subproblem may not affect the solutions to
other subproblems of the same problem. (More on this later.)

DP reduces computation by Solving subproblems in a bottom-up
fashion.

Storing solution to a subproblem the first time it is solved.

Looking up the solution when subproblem is encountered again.

Key: determine structure of optimal solutions

Nurit Haspel CS624 - Analysis of Algorithms

Longest Common Subsequence (LCS)

Definition

A subsequence of a sequence A = {a1, a2, . . . , an} is a sequence
B = {b1, b2, . . . , bm} (with m ≤ n) such that

Each bi is an element of A.

If bi occurs before bj in B (i.e., if i < j) then it also occurs
before bj in A.

We do not assume that the elements of B are consecutive
elements of A.

For example:“axdy” is a subsequence of “baxefdoym”

The “longest common subsequence” problem is simply this:

Given two sequences X = {x1, x2, . . . , xm} and Y =
{y1, y2, . . . , yn} (note that the sequences may have differ-
ent lengths), find a subsequence common to both whose
length is longest.

Nurit Haspel CS624 - Analysis of Algorithms

LCS – example

p i o n e e r

s p r i n g t i m e

This is part of a class of what are called alignment problems,
which are extremely important in biology.

It can help us to compare genome sequences to deduce quite
accurately how closely related different organisms are, and to
infer the real “tree of life”.

Trees showing the evolutionary development of classes of
organisms are called “phylogenetic trees”.

A lot of this kind of comparison amounts to finding common
subsequences.

Nurit Haspel CS624 - Analysis of Algorithms

LCS – Naive approach

Try the obvious approach: list all the subsequences of X and
check each to see if it is a subsequence of Y , and pick the
longest one that is.

There are 2m subsequences of X . To check to see if a
subsequence of X is also a subsequence of Y will take time
O(n). (Is this obvious?)

Picking the longest one an O(1) job, since we can keep track
as we proceed of the longest subsequence that we have found
so far.

So the cost of this method is O(n2m).

That’s pretty awful, since the strings that we are concerned
with in biology have hundreds or thousands of elements at
least.

Nurit Haspel CS624 - Analysis of Algorithms

LCS – Optimal Substructure

We have two strings, with possibly different lengths:
X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}
A prefix of a string is an initial segment. So we define for each i less
than or equal to the length of the string the prefix of length i :
X = {x1, x2, . . . , xi} and Y = {y1, y2, . . . , yi}
A solution of our problem reflects itself in solutions of prefixes of X
and Y .

Theorem

Let Z = {z1, z2, . . . , zk} be any LCS of X and Y .

1 If xm = yn, then zk = xm = yn, and Zk−1 is an LCS of Xm−1
and Yn−1.

2 If xm ̸= yn, then zk ̸= xm ⇒ Z is an LCS of Xm−1 and Y .

3 If xm ̸= yn, then zk ̸= yn ⇒ Z is an LCS of X and Yn−1.

Nurit Haspel CS624 - Analysis of Algorithms

LCS – Optimal Substructure

Proof.

1 By assumption xm = yn. If zk does not equal this value, then
Z must be a common subsequence of Xm−1 and Yn−1, and so
the sequence Z ′ = {z1, z2, . . . , zk , xm} would be a common
subsequence of X and Y . But this is a longer common
subsequence than Z , and this is a contradiction.

2 If zk ̸= xm, then Z must be a subsequence of Xm−1, and so it
is a common subsequence of Xm−1 and Y . If there were a
longer one, then it would also be a common subsequence of X
and Y , which would be a contradiction.

3 This is really the same as 2.

Nurit Haspel CS624 - Analysis of Algorithms

LCS – Optimal Substructure

Corollary

If xm ̸= yn, then either

Z is an LCS of Xm−1 and Y , or

Z is an LCS of X and Yn−1.

Thus, the LCS problem has what is called the optimal
substructure property: a solution contains within it the
solutions to subproblems – in this case, to subproblems
constructed from prefixes of the original data.

This is one of the two keys to the success of a dynamic
programming solution.

Nurit Haspel CS624 - Analysis of Algorithms

Recursive Algorithm

Let c[i , j] be the length of the LCS of Xi and Yj . Based on
The optimal substructure theorem, we can write the following
recurrence:

c[i , j] =


0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i , j > 0 and xi = yj

max
{
c[i − 1, j], c[i , j − 1]

}
if i , j > 0 and xi ̸= yj

The optimal substructure property allows us to write down an
elegant recursive algorithm.

However, the cost is still far too great – we can see that there
are Ω(2min{m,n}) nodes in the tree, which is still a killer.

Nurit Haspel CS624 - Analysis of Algorithms

Recursive Algorithm

[4,3]

[3,3] [4,2]

[2,3] [3,2] [3,2] [4,1]

[1,3] [2,2] [2,2] [3,1] [2,2] [3,1] [3,1] [4,0]

[0,3][1,2][1,2][2,1][1,2][2,1][2,1][3,0][1,2][2,1][2,1][3,0][2,1][3,0]

Nurit Haspel CS624 - Analysis of Algorithms

Overlapping Substructures

There are only O(mn) distinct nodes, but many nodes appear
multiple times.

We only have to compute each subproblem once, and save the
result so we can use it again.

This is called memoization, which refers to the process of
saving (i.e., making a “memo”) of a intermediate result so
that it can be used again without recomputing it.

Of course the words “memoize” and “memorize” are related
etymologically, but they are different words, and you should
not mix them up.

Nurit Haspel CS624 - Analysis of Algorithms

Another Algorithm

Algorithm 1 LCSLength(X,Y,m,n)
1: for i ← 1 . . .m do
2: c[i , 0]← 0
3: end for
4: for j ← 0 . . . n do
5: c[0, j]← 0
6: end for
7: for i ← 1 . . .m do
8: for j ← 1 . . . n do
9: if xi == yj then

10: c[i , j]← c[i − 1, j − 1] + 1; b[i , j]← “↖”
11: else
12: if c[i − 1, j] ≥ c[i , j − 1] then
13: c[i , j]← c[i − 1, j]; b[i , j]← “↑”
14: else
15: c[i , j]← c[i , j − 1]; b[i , j]← “←”
16: end if
17: end if
18: end for
19: end for
20: return c and b

Nurit Haspel CS624 - Analysis of Algorithms

LCS Table – Example

j 0 1 2 3 4 5 6

i yj B D C A B A

0

1

2

3

4

5

6

7

xi

A

B

C

B

D

A

B
0 1
տ

2
↑

2
↑

3
↑

4
տ

4
↑

0 1
↑

2
↑

2
↑

3
տ

3
↑

4
տ

0 1
↑

2
տ

2
↑

2
↑

3
↑

3
↑

0 1
տ

1
↑

2
↑

2
↑

3
տ

3←
0 1
↑

1
↑

2
տ

2← 2
↑

2
↑

0 1
տ

1← 1← 1
↑

2
տ

2←
0 0
↑

0
↑

0
↑

1
տ

1← 1
տ

0 0 0 0 0 0 0

Nurit Haspel CS624 - Analysis of Algorithms

Constructing the Actual LCS

Just backtrack from c[m, n] following the arrows:

Algorithm 2 PrintLCS(b, X, i, j)

1: if i = 0 or j = 0 then
2: return
3: end if
4: if b[i , j] == “↖” then
5: PrintLCS(b,X , i − 1, j − 1)
6: PRINT xi
7: else
8: if b[i , j] == “↑” then
9: PrintLCS(b,X , i − 1, j)

10: else
11: PrintLCS(b,X , i , j − 1)
12: end if
13: end if

Nurit Haspel CS624 - Analysis of Algorithms

What Makes Dynamic Programming Work?

It is important to understand the two properties of this problem
that made it possible for use of dynamic programming:

Optimal substructure: subproblems are just “smaller versions”
of the main problem.

Finding the LCS of two substrings could be reduced to the
problem of finding the LCS of shorter substrings.

This property enables us to write a recursive algorithm to
solve the problem, but this recursion is much too expensive –
typically, it has an exponential cost.

Overlapping subproblems: This is what saves us: The same
subproblem is encountered many times, so we can just solve
each subproblem once and “memoize” the result.

In the current problem, that memoization cut down the cost
from exponential to quadratic, a dramatic improvement.

Nurit Haspel CS624 - Analysis of Algorithms

What is Optimal Substructure?

Subproblems are just “smaller versions” of the main problem.

Identify the structure of the subproblem: A subset of the
coins, a string prefix etc.

The optimal substructure, formulated: Given an optimal
solution S to a problem P, any sub-solution S’, a substructure
of S, is optimal with respect to P’, the part of P it represents.

Given an set of coins representing an optimal solution for N
cents, any subset of coins C ′ ⊆ C is optimal for its amount.

Given an LCS Z for two strings X and Y , any prefix Zi of Z
is an LCS for the prefixes of X and Y it represents.

Notice that the optimal substructure is a property of the
problem and does not depend on a specific algorithm.

Proof typically by a cut-paste or exchange argument: If we
had a more optimal solution to the subproblem, we could use
it to build a better solution to the entire problem.

Nurit Haspel CS624 - Analysis of Algorithms

Optimal Binary Search Tree

Given sequence K = k1 < k2 < < kn of n sorted keys, with a
search probability pi for each key ki .

Want to build a binary search tree (BST) with minimum
expected search cost.

Actual cost = # of items examined.

For key ki , cost = depthT (ki) + 1, where depthT (ki) = depth
of ki in BST T .

Example – dictionary search, where not all words have equal
probability to be searched.

Nurit Haspel CS624 - Analysis of Algorithms

Example

Suppose we have a BST containing 5 words.

We can create an additional 6 “dummy” nodes to represent
searches for words not in the tree, like this (where we have
arranged the words in alphabetical order:

d0 k1 d1 k2 d2 k3 d3 k4 d4 k5 d5

The following table shows the probabilities of searching for these
different nodes:

i 0 1 2 3 4 5

pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

Nurit Haspel CS624 - Analysis of Algorithms

Cost of Searching a BST

pi is the probability of searching for ki (the probability of
searching for the i th word)

qi (for i ≥ 1) is the probability of searching for di (the
probability of searching for a word between the i th word and
the (i + 1)th word in the tree)

q0 is the probability of searching for a word before the first
word in the tree

Of course we must have

n∑
i=1

pi +
n∑

i=0

qi = 1

Nurit Haspel CS624 - Analysis of Algorithms

Expected Search Cost of Each Tree

Assume that the cost of a search is the number of nodes
visited in the search.

Denote the expected search cost for a tree T by E (T).

For any node x in the tree T , let us say that depthT (x) is the
distance of x from the root of T . (So the root has depth 0.)

Then we have

E (T) =
n∑

i=1

(
depthT (ki) + 1

)
· pi +

n∑
i=0

(
depthT (di) + 1

)
· qi

Note that this can also be written as

E (T) =
n∑

i=1

depthT (ki)·pi+
n∑

i=0

depthT (di)·qi+
(n∑

i=1

pi+
n∑

i=0

qi

)

Nurit Haspel CS624 - Analysis of Algorithms

Expected Search Cost of Each Tree

If we think of the probabilities pi and qi as “weights”, then

the total weight of the tree is w(1, n) =
n∑

i=1
pi +

n∑
i=0

qi

You will see below why we called this w(1, n), and not just w .

So the equation above could also be written like this:

E (T) = w(1, n) +
n∑

i=1

depthT (ki) · pi +
n∑

i=0

depthT (di) · qi

As it happens, we know that w(1, n) actually equals 1, but we
will write some similar identities below in which this is no
longer true.

Nurit Haspel CS624 - Analysis of Algorithms

Example – Two Trees with 5 Keys

k2

k1 k4

d0 d1 k3 k5

d2 d3 d4 d5

k2

k1 k5

d0 d1 k4 d5

k3 d4

d2 d3

Nurit Haspel CS624 - Analysis of Algorithms

Example – Expected Search Cost of Left Tree

node depth probability contribution

k1 1 0.15 0.30
k2 0 0.10 0.10
k3 2 0.05 0.15
k4 1 0.10 0.20
k5 2 0.20 0.60
d0 2 0.05 0.15
d1 2 0.10 0.30
d2 3 0.05 0.20
d3 3 0.05 0.20
d4 3 0.05 0.20
d5 3 0.10 0.40

Total 2.80

The expected search cost for the other tree is 2.75. So putting the nodes of
maximum probability highest is not necessarily the best thing to do.

Nurit Haspel CS624 - Analysis of Algorithms

Optimal Substructure

The number of binary trees on n nodes is

1

n + 1

(
2n

n

)
=

4n√
πn3/2

(
1 + O(1/n)

)
Certainly exhaustive search is not a useful way of finding the
best tree in this problem.

Substructure naturally involves subtrees.

Our problem does exhibit optimal substructure in in the
following way:

Since our tree is a BST, any subtree contains a contiguous
sequence of keys {ki , . . . , kj} and its leaves will be the
contiguous set of dummy nodes {di−1, . . . , dj}.
Let us denote the optimal binary search tree containing
exactly these nodes by Ti ,j .

Nurit Haspel CS624 - Analysis of Algorithms

Optimal Substructure

The optimal substructure property that our problem possesses is
this:

Theorem (Optimal substructure for the optimal binary search tree
problem)

If T is an optimal binary search tree and if T ′ is any subtree of T ,
then T ′ is an optimal binary search tree for its nodes.

Proof.

This is a standard cut-and-paste argument.

Nurit Haspel CS624 - Analysis of Algorithms

Compute the Optimal Solution

Let e[i , j] be the expected cost of searching an optimal binary
search tree containing the keys {ki , . . . , kj}.
That is, e[i , j] is the expected cost of searching the tree Ti ,j .

Ultimately, we want to compute e[1, n].

If the optimal binary search tree for this subproblem has kr as
its root then the problem divides into three parts:

The expected cost of searching the tree Ti,r−1 built from the
nodes {i , . . . , r − 1}, adjusted for the fact that this is a subtree
of our original tree Ti,j and so all the depths should be 1
greater than they are in the subtree.
The cost of searching for the root kr .
The expected cost of searching the tree Tr+1,j built from the
nodes {kr+1, . . . , kj}, with all the depths 1 greater than they
are in the subtree.

Nurit Haspel CS624 - Analysis of Algorithms

Compute the Optimal Solution

r can take any of the values {i , . . . , j}.
If r = i then the first subtree Ti ,r−1 is empty (rather, we let it
contain the dummy node di−1 since there is nowhere else to
put that node anyway).

Similarly, if r = j then the second subtree Tr+1,j contains the
dummy node dj .

In other words – the tree Ts,s−1 built from the nodes
{ks , . . . ks−1} contains the single node ds−1 and its expected
cost e[s, s − 1] will thus be qs .

Set w(i , j) =
j∑

l=i

pl +
j∑

l=i−1
ql

This is the sum of the probabilities of all the nodes in the tree
Ti ,j built from the nodes {ki , . . . , kj}.

Nurit Haspel CS624 - Analysis of Algorithms

Compute the Optimal Solution

The tree Ti ,r−1 has cost e[i , r − 1], but as a subtree of Ti ,r ,
its cost has to be increased by increasing each depth number
by 1 – this amounts to adding w(i , r − 1).

The expected cost that the subtree Ti ,r−1 contributes to the
expected cost of Ti ,j is e[i , r − 1] + w(i , r − 1).

A similar argument applies to the other subtree Tr+1,j .

So we get

e[i , j] = E (Ti ,j)

= pr +
(
E (Ti ,r−1) + w(i , r − 1)

)
+
(
E (Tr+1,j) + w(r + 1, j)

)
= pr +

(
e[i , r − 1] + w(i , r − 1)

)
+
(
e[r + 1, j] + w(r + 1, j)

)
Nurit Haspel CS624 - Analysis of Algorithms

Simplifying Things a Little

Note that w(i , j) = w(i , r − 1) + pr + w(r + 1, j)

So we have e[i , j] = w(i , j) + e[i , r − 1] + e[r + 1, j]

We have to take the minimum over all possible choices of r .

Thus we have

e[i , j] =

{
qi−1 if j = i − 1

w(i , j) + mini≤r≤j{e[i , r − 1] + e[r + 1, j]} if i ≤ j

We can use it to compute e[1, n].

However this algorithm is still exponential in cost.

We can do better because this problem also exhibits the property of
overlapping subproblems.

There are only O(n2) values e[i , j] with 1 ≤ i ≤ n + 1 and
0 ≤ j ≤ n, so we can memoize the.

Nurit Haspel CS624 - Analysis of Algorithms

More Efficient Calculation

Store pre-computed values in an array e[1 . . . n + 1, 0 . . . n].

We can also store the values w(i , j) in a table w [1 . . . n + 1, 0 . . . n].

We have

w [i , j] =

{
qi−1 if j = i − 1

w [i , j − 1] + pj + qj otherwise

There are O(n2) values of w [i , j] and each one takes a constant time
to compute, so the total cost of computing the w array is O(n2).

The cost of computing each value of e[i , j] is O(n) and there are
O(n2) such values, so the cost of computing all the values of e[i , j]
is O(n3).

So the total cost of computing the w array first and then the e
array is O(n2) + O(n3) = O(n3)

Nurit Haspel CS624 - Analysis of Algorithms

Example – Chain Operations

Determine the optimal sequence for performing a series of
operations (the general class of the problem is important in
compiler design for code optimization & in databases for
query optimization)

For example: given a series of matrices: A1 . . .An , we can
“parenthesize” this expression however we like, since matrix
multiplication is associative (but not commutative)

Multiply a pxq matrix by a qxr matrix B, the result will be a
pxr matrix C. (# of columns of A must be equal to # of rows
of B.)

Nurit Haspel CS624 - Analysis of Algorithms

Matrix Multiplications

for 1 ≤ i ≤ p and 1 ≤ j ≤ r , C [i , j] =
q∑

k=1

A[i , k]B[k, j]

Observe that there are pr total entries in C and each takes O(q)
time to compute, thus the total time to multiply 2 matrices is pqr .

A * B = C

p

q

q

r

p

r

Nurit Haspel CS624 - Analysis of Algorithms

Chain Matrix Multiplication (CMM)

Given a sequence of matrices A1,A2, . . .An, and dimensions
p0, p1 . . . pn where Ai is of dimension pi−1xpi , determine
multiplication sequence that minimizes the number of
operations.

This algorithm does not perform the multiplication, it just
figures out the best order in which to perform the
multiplication.

Nurit Haspel CS624 - Analysis of Algorithms

CMM – Example

Consider 3 matrices: A1 be 5 x 4, A2 be 4 x 6, and A3 be 6 x
2.

Count the number of operations:

Mult[((A1A2)A3)] = (5x4x6) + (5x6x2) = 180

Mult[(A1(A2A3))] = (4x6x2) + (5x4x2) = 88

Even for this small example, considerable savings can be
achieved by reordering the evaluation sequence.

Nurit Haspel CS624 - Analysis of Algorithms

CMM – Naive Algorithm

If we have just 1 item, then there is only one way to
parenthesize.

If we have n items, then there are n-1 places where you could
break the list with the outermost pair of parentheses, namely
just after the first item, just after the 2nd item, etc. and just
after the (n − 1)th item.

When we split just after the kth item, we create two sub-lists
to be parenthesized, one with k items and the other with n-k
items.

Then we consider all ways of parenthesizing these.

If there are L ways to parenthesize the left sub-list, R ways to
parenthesize the right sub-list, then the total possibilities is
L*R.

Nurit Haspel CS624 - Analysis of Algorithms

Cost of Naive Algorithm

The number of different ways of parenthesizing n items is

P(n) =


1 if n = 1
n−1∑
k=1

P(k)P(n − k) if n ≥ 2

Specifically P(n) = C (n − 1).

C (n) = (1/(n + 1)) ∗
(2n
n

)
= Ω(4n/n3/2)

Nurit Haspel CS624 - Analysis of Algorithms

DP Solution (I)

Let Ai ...j be the product of matrices i through j. Ai ...j is a
pi−1xpj matrix.

At the highest level, we are multiplying two matrices together.
That is, for any k, 1 ≤ k ≤ n − 1, A1...n = (A1...k)(Ak+1...n)

The problem of determining the optimal sequence of
multiplication is broken up into 2 parts:

Q: How do we decide where to split the chain (what k)?
A: Consider all possible values of k.
Q: How do we parenthesize the subchains A1...k&Ak + 1 . . . n?
A: Solve by recursively applying the same scheme.

NOTE: this problem satisfies the “principle of optimality”

Next, we store the solutions to the sub-problems in a table
and build the table in a bottom-up manner.

Nurit Haspel CS624 - Analysis of Algorithms

DP Solution

For 1 ≤ i ≤ j ≤ n, let m[i,j] denote the minimum number of
multiplications needed to compute Ai ...j .

Example: Minimum number of multiplies for A3...7

A1A2 A3A4A5A6A7︸ ︷︷ ︸A8A9

m[3, 7]

In terms of pi , the product A3...7 has dimensions p2xp7.

Nurit Haspel CS624 - Analysis of Algorithms

DP Solution

The optimal cost can be described be as follows:

i = j ⇒ the sequence contains only 1 matrix, so m[i, j] = 0.

i < j ⇒ This can be split by considering each k, i ≤ k < j , as
Ai ...k(pi−1xpk) times Ak+1...j(pkxpj).

This suggests the following recursive rule for computing m[i, j]:

m[i , i] = 0

m[i , j] = min
i≤k<j

(m[i , k] +m[k + 1, j] + pi−1pkpj)∀i < j

Nurit Haspel CS624 - Analysis of Algorithms

Computing m[i,j]

For a specific K:

(Ai . . .Ak)(Ak+1 . . .Aj)

=Ai ...k(Ak+1 . . .Aj) (m[i, k] mults)

=Ai ...kAk+1...j (m[k+1, j] mults)

=Ai ...j (pi−1pkpj mults)

For solution, evaluate for all k and take minimum.

m[i , j] = mini≤k<j(m[i , k] +m[k + 1, j] + pi−1pkpj)

Nurit Haspel CS624 - Analysis of Algorithms

Matrix Chain Order

Algorithm 3 MatrixChainOrder(p)

1: n← length[p]− 1
2: for i ← 1 . . . n// initialization: O(n) time do
3: m[i , i]← 0
4: for L← 2 . . . n// L = length of sub-chain do
5: for i ← 1 . . . n − L+ 1 do
6: j ← i + L− 1, m[i , j]←∞
7: for k ← itoj − 1 do
8: q ← m[i , k] +m[k + 1, j] + pi−1pkpj
9: if q < m[i , j] then

10: m[i , j]← q, s[i , j]← k
11: end if
12: end for
13: end for
14: end for
15: end for
16: return m and s

Nurit Haspel CS624 - Analysis of Algorithms

Runtime Analysis

The array s[i, j] is used to extract the actual sequence (see
next).

There are 3 nested loops and each can iterate at most n
times, so the total running time is Θ(n3).

Nurit Haspel CS624 - Analysis of Algorithms

Extracting Optimal Sequence

Leave a split marker indicating where the best split is (i.e. the
value of k leading to minimum values of m[i, j]).

We maintain a parallel array s[i, j] in which we store the value
of k providing the optimal split.

If s[i, j] = k, the best way to multiply the sub-chain Ai . . . j is
to first multiply the sub-chain Ai ...k and then the sub-chain
Ak+1...j , and finally multiply them together.

Intuitively s[i, j] tells us what multiplication to perform last.

We only need to store s[i, j] if we have at least 2 matrices
where j > i .

Nurit Haspel CS624 - Analysis of Algorithms

Chain Multiplication

Algorithm 4 Mult(A,i,j)

1: if i < j then
2: k ← s[i , j]
3: X ← Mult(A, i , k) // X = A[i]...A[k]
4: Y = Mult(A, k + 1, j) // Y = A[k+1]...A[j]
5: return X ∗ Y
6: else
7: return A[i]
8: end if

Nurit Haspel CS624 - Analysis of Algorithms

Chain Multiplication – Example

The initial set of dimensions are < 5, 4, 6, 2, 7 >: we are
multiplying A1 (5x4) times A2 (4x6) times A3 (6x2) times A4

(2x7). Optimal sequence is (A1(A2A3))A4.

m[i,j]

0 120 88 158

0 48 104

0 84

0

1 2 3 4
j

4

3

2

1

i

5

4

6

2

7

p0

p1

p2

p3

p4

A1

A2

A3

A4

s[i,j]

1 1 3

2 3

3

2 3 4
j

3

2

1

i

Final order

3

2

1

A1 A2 A3 A4

Nurit Haspel CS624 - Analysis of Algorithms

Finding a Recursive Solution

Figure out the ”top-level” choice you have to make (e.g.,
where to split the list of matrices)

List the options for that decision

Each option should require smaller sub-problems to be solved

Recursive function is the minimum (or max) over all the
options

m[i , j] = mini≤k<j(m[i , k] +m[k + 1, j] + pi−1pkpj)

Nurit Haspel CS624 - Analysis of Algorithms

Steps in Dynamic Programming

Characterize structure of an optimal solution.

Prove optimal substructure based on the structure of the
optimal solution.

Define value of optimal solution recursively.

Prove overlapping subproblems that recur throughout.

Compute optimal solution values either top-down with
caching or bottom-up in a table.

Construct an optimal solution from computed values.

Nurit Haspel CS624 - Analysis of Algorithms

