
CS624 - Analysis of Algorithms

Greedy Algorithms

October 27, 2025

Nurit Haspel CS624 - Analysis of Algorithms

Greedy Algorithms

Like dynamic programming, used to solve optimization
problems.

Problems exhibit optimal substructure (like DP).

Problems also exhibit the greedy-choice property.

When we have a choice to make, make the one that looks
best right now.

Make a locally optimal choice in hope of getting a globally
optimal solution.

Nurit Haspel CS624 - Analysis of Algorithms

Greedy Strategy

The choice that seems best at the moment is the one
we go with.

Prove that when there is a choice to make, one of the optimal
choices is the greedy choice.

Therefore, it’s always safe to make the greedy choice.

Show that all but one of the subproblems resulting from the
greedy choice are empty.

Nurit Haspel CS624 - Analysis of Algorithms

Reminder – Making Change

Task – buy a cup of coffee (say it costs 63 cents).

You are given an unlimited number of coins of all types
(neglect 50 cents and 1 dollar).

Pay exact change.

What is the combination of coins you’d use?

1 cent 5 cents 10 cents 25 cents

Nurit Haspel CS624 - Analysis of Algorithms

Change Making

The greedy method gives the optimal solution for US coinage.

With different coinage, the greedy algorithm doesn’t always
find the optimal solution.

Example of a coinage with an additional 21 cent piece. Then
63 = 3(21), but greedy says use 2 25s, 1 10, and 3 1’s, a total
of 6 coins.

The coin values need to be spread out enough to make greedy
work.

But even some spread-out cases don’t work. Consider having
pennies, dimes and quarters, but no nickels.

Then 30 by greedy uses 1 quarter and 5 pennies, ignoring the
best solution of 3 dimes.

Nurit Haspel CS624 - Analysis of Algorithms

The Greedy Choice Property

Lemma

Any optimal solution involving US coins cannot have more than
two dimes, one nickel and four cents.

Proof.

If we had three dimes we could replace them by a quarter and
a nickel, resulting in one fewer coins.

Replace two nickes by a dime, resulting in one fewer coins.

Replace five cents by a nickel, resulting in four fewer coins.

Corollary

The total sum of {1, 5, 10} coins cannot exceed 24 cents.

Nurit Haspel CS624 - Analysis of Algorithms

The Greedy Choice Property

The above property can be shown for values of n < 25 (and
only {1, 5, 10} coins).
Try to do it yourselves.

In this case, the greedy choice is to select, at every step, the
largest coin we can use.

In other words: The optimal solution for n always contains the
largest coin ci such that ci ≤ n

Nurit Haspel CS624 - Analysis of Algorithms

The Greedy Choice Property

Proof.

Again, by contradiction

Assume there is a solution C for n that does not contain ci .

It means that it contains only smaller coins.

But ci ≤ n and every bigger coin can be expressed as a
combination of smaller coins (see above).

So we can always substitute ci for a combination of smaller
coins (that includes the next smallest), getting a better
solution.

Nurit Haspel CS624 - Analysis of Algorithms

But wait... Can we always Do That?

In the case of US coins – yes, but not always. Why?

Because while the optimal substructure always exists, the
greedy choice property does not exist for all coin
combinations.

In general, if we have a set of coins {a1, a2, ..., am} such that
at < at−1 and for each pair at , at−1 define mt = ⌈at−1

at
⌉ and

St = at ∗mt , then the greedy solution is optimal only if for
every t ∈ 2..m, G (St) ≤ mt where G (St) is the greedy
solution for St .

For example – if we add a 7-cent piece, then ⌈107 ⌉ = 2, and
St = 7 ∗ 2 = 14, and G (14) = 5 > 2.

Also, for the set {1, 10, 25} we cannot guarantee the greedy
choice property for a similar reason: ⌈2510⌉ = 3,
St = 10 ∗ 3 = 30 and G (30) = 6 > 3.

Nurit Haspel CS624 - Analysis of Algorithms

But wait... Can we always Do That?

In the case of US coins – yes, but not always. Why?

Because while the optimal substructure always exists, the
greedy choice property does not exist for all coin
combinations.

In general, if we have a set of coins {a1, a2, ..., am} such that
at < at−1 and for each pair at , at−1 define mt = ⌈at−1

at
⌉ and

St = at ∗mt , then the greedy solution is optimal only if for
every t ∈ 2..m, G (St) ≤ mt where G (St) is the greedy
solution for St .

For example – if we add a 7-cent piece, then ⌈107 ⌉ = 2, and
St = 7 ∗ 2 = 14, and G (14) = 5 > 2.

Also, for the set {1, 10, 25} we cannot guarantee the greedy
choice property for a similar reason: ⌈2510⌉ = 3,
St = 10 ∗ 3 = 30 and G (30) = 6 > 3.

Nurit Haspel CS624 - Analysis of Algorithms

Optimal Substructure, More Formally

Lemma

If C is a set of coins that corresponds to optimal change making
for an amount n, and if C ′ is a subset of C with a coin c ∈ C taken
out, then C ′ is an optimal change making for an amount n − c.

Proof.

By contradiction:

Assume that C ′ is not an optimal solution for n − c .

In other words, there is a solution C ′′ that has fewer coins
than C ′ for n − c .

So we could combine C ′′ with c to get a better solution than
C , contradicting the assumption that C is optimal.

Nurit Haspel CS624 - Analysis of Algorithms

Optimal Substructure, More Formally

Lemma

If C is a set of coins that corresponds to optimal change making
for an amount n, and if C ′ is a subset of C with a coin c ∈ C taken
out, then C ′ is an optimal change making for an amount n − c.

Proof.

By contradiction:

Assume that C ′ is not an optimal solution for n − c .

In other words, there is a solution C ′′ that has fewer coins
than C ′ for n − c .

So we could combine C ′′ with c to get a better solution than
C , contradicting the assumption that C is optimal.

Nurit Haspel CS624 - Analysis of Algorithms

Example – Character Encoding

A way to compress a text message.

Example: 100,000 characters, with only the letters
{a, b, c , d , e, f }.
Fixed length coding:

character code

a 000
b 001
c 010
d 011
e 100
f 101

We need three bits for each character, so the entire message will
take 300,000 bits to encode. Can we do better?

Nurit Haspel CS624 - Analysis of Algorithms

Variable Length Code

Using codes of variable lengths to encode characters.

The length is proportional to the frequency of the character.

Suppose the frequencies of the characters are as follows

We could do better if a had a shorter code than f ,

character times used

a 45,000
b 13,000
c 12,000
d 16,000
e 9,000
f 5,000

Nurit Haspel CS624 - Analysis of Algorithms

Prefix Codes

A set of codes such that no code is the prefix of another

This is the only way we know when one code ends and
another one begins. For example:

character Frequency code

a .45 0
b .13 101
c .12 100
d .16 111
e .9 1101
f .5 1100

The total size of the encoded message is now

(45 · 1 + 13 · 3 + 12 · 3 + 16 · 3 + 9 · 4 + 5 · 4) · 1000 = 224, 000 bits

A significant improvement, even though some code words are
longer.

Nurit Haspel CS624 - Analysis of Algorithms

Prefix Codes

If we treat the frequency as the relative number of times a
character appears in the code, then we can re-write the former
equation as:

1(.45) + 3(.13) + 3(.12) + 3(.16) + 4(.09) + 4(.05) = 2.24

This is the expected number (or “average” number) of bits
per character – as opposed to 3 bits per character in our
fixed-length encoding.

Nurit Haspel CS624 - Analysis of Algorithms

Prefix Codes

We can measure the efficiency of a code by the expected
number of bits per character.

Let C be the set of characters.

x is a variable that runs over the set of characters in C , and if
f (x) is the frequency of the character x , and if length(x) is the
length of the code word corresponding to x , then the average
number of bits per character will be:

∑
x∈C f (x) · length(x)

Also –
∑

x∈C f (x) = 1

Just think of the values of the function f as weights.

Our problem is – given the set C and the frequency function
f , find a prefix encoding that minimizes this value.

Nurit Haspel CS624 - Analysis of Algorithms

Decoding

Retrieval of original text.

The codes can be represented by binary trees (left: fixed code.
Right: variable code).

100

86 14

58 28 14

a:45 b:13 c:12 d:16 e:9 f :5

0 1

0 1 0

0 1 0 1 0 1

100

a:45 55

25 30

c:12 b:13 14 d:16

f :5 e:9

0 1

0 1

0 1 0 1

0 1

Nurit Haspel CS624 - Analysis of Algorithms

Decoding

The depth of a leaf in the tree is just the length of the code
word for that character.

Let dT (x) be the depth of a leaf node corresponding to the
character x in the tree T .

The average cost AC per character in the encoding scheme
defined by the tree T is

AC (T) =
∑
x∈C

f (x)dT (x)

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding

Exhaustive search:

Enumerate all possible prefix trees and find the one with the
smallest average cost per character.

Without performing an exact analysis, the cost of this
algorithm would be exponential in the number of characters,
and therefore completely useless.

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding

Lemma

If T is the tree corresponding to an optimal prefix encoding, and if
TL and TR are its left and right subtrees, respectively, then TL and
TR are also trees corresponding to optimal prefix encodings.

Proof.

Let us say that CL is the set of characters that are leaf nodes
in TL and similarly for CR and TR .

If x ∈ CL, then certainly dTL
(x) = dT (x)− 1, and the same is

true for CR and TR .

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding

Proof (cont.)

Therefore we can see from our basic cost formula that

AC (T) =
∑
x∈C

f (x)dT (x)

=
∑
x∈CL

f (x)
(
dTL

(x) + 1
)
+

∑
x∈CR

f (x)
(
dTR

(x) + 1
)

=
∑
x∈CL

f (x)dTL
(x) +

∑
x∈CR

f (x)dTR
(x) +

∑
x∈C

f (x)

If TR were not an optimal encoding tree, then we could
replace it by a more efficient one (with the same leaves and
the same frequencies), and this would show in turn that T
could not have been optimal, a contradiction.

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding

Corollary

If T is the tree corresponding to an optimal prefix encoding, then
every subtree of T also corresponds to an optimal prefix encoding.

Proof.

This follows immediately by induction.

This lemma expresses the fact that the problem of finding an
optimal prefix code has the optimal substructure property.

This means that we could write a recursive algorithm for it.

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding – Recursive Algorithm

Start with a worklist consisting of n trees, each tree consisting
of exactly 1 character.

From these trees construct other trees bottom-up and add
them to the worklist.

As each new tree is constructed, check the worklist to see if a
tree with the same leaves is in it.

Keep the tree with the smallest cost in the worklist and
remove any others with the same set of leaves.

At the end of this process there will be one tree in the worklist
that contains all the characters in C as leaves, and that tree
represents an optimal encoding.

This algorithm will definitely give the correct answer, but is
still inefficient, although it is better than exhaustive search.

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding

The optimal substructure property should remind us of
dynamic programming.

If there were also an overlapping subproblems property of this
problem, we could try such a solution.

Actually we have something even better: We don’t actually
have to form all possible trees on the way up and check them
all.

We actually can tell at each step exactly which tree to form.

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding

Lemma

Let x and y be two characters in C having the lowest frequencies.
Then there exists an optimal prefix code for C in which the
codewords for x and y have the same length and differ only in the
last bit.

Proof.

Suppose that the tree T represents an optimal prefix code for
our problem.

If x and y are sibling nodes of greatest depth, then we are
done.

Otherwise, suppose that p and q are sibling nodes of greatest
depth.

We will exchange x and p, and we will also exchange y and q.

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding

Proof (cont.)

We know that

dT (x) ≤ dT (p)

dT (y) ≤ dT (q)

f (x) ≤ f (p)

f (y) ≤ f (q)

Suppose the tree T , after these two switches, is turned into the tree
T ′. Then we have:

dT ′(x) = dT (p)

dT ′(p) = dT (x)

dT ′(y) = dT (q)

dT ′(q) = dT (y)

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding

Proof (cont.)

AC (T ′)− AC (T) =
∑
z∈C

f (z)
(
dT ′(z)− dT (z)

)
= f (p)

(
dT ′(p)− dT (p)

)
+ f (x)

(
dT ′(x)− dT (x)

)
+ f (q)

(
dT ′(q)− dT (q)

)
+ f (y)

(
dT ′(y)− dT (y)

)
= f (p)

(
dT (x)− dT (p)

)
+ f (x)

(
dT (p)− dT (x)

)
+ f (q)

(
dT (y)− dT (q)

)
+ f (y)

(
dT (q)− dT (y)

)
=

(
f (p)− f (x)

)(
dT (x)− dT (p)

)
+
(
f (q)− f (y)

)(
dT (y)− dT (q)

)
≤ 0

so AC (T ′) ≤ AC (T), which shows that T was not an optimal tree to
begin with, and this is a contradiction.

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding – Huffman’s Algorithm

We can start out with our initial worklist, and we can take
two nodes of smallest frequency and build a tree from them
(in which they are the two leaves).

Then we delete those two nodes from the worklist, because we
know that they will definitely be part of the little tree we have
just constructed – we will never have to look at them again.

By exactly the same argument, we can take the two elements
of the worklist that are now of smallest cost, and build a little
tree from them, and then throw them away.

When we are done, we have the tree we are looking for.

The algorithm: We keep a minimum-priority queue Q of
subtrees. Q initially consists of the n characters. The priority
of any element in Q will be the cost of that subtree.

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding – Huffman’s Algorithm

Algorithm 1 Huffman(C)

1: n← |C |
2: Q ← C
3: for i ← 1 . . . n − 1 do
4: allocate a new node z
5: left[z]← ExtractMin(Q)
6: right[z]← ExtractMin(Q)
7: f [z]← f [x] + f [y]
8: Insert(Q.z)
9: end for

10: return ExtractMin(Q) //Return the root of the tree.

Nurit Haspel CS624 - Analysis of Algorithms

Finding the Optimal Encoding – Huffman’s Algorithm

This algorithm works even better than a dynamic
programming algorithm: we don’t have to memoize
intermediate results for later use.

We know exactly at each step what we need to do.

This is called a “greedy” algorithm because we chose the
locally best solution at each step.

In effect, we act as if we were “greedy”.

What is is the best at each step is guaranteed (in this case) to
turn to out to be the best overall.

Nurit Haspel CS624 - Analysis of Algorithms

Another Example – Activity Selection

Input: Set S of n activities – {a1, a2, . . . , an}.
si = start time of activity i.

fi = finish time of activity i.

Output: Subset A of maximum number of compatible
activities.

Two activities are compatible, if their intervals do not overlap.

Example (activities in each line are compatible):

Nurit Haspel CS624 - Analysis of Algorithms

Optimal Substructure

Assume activities are sorted by finishing times –
f1 ≤ f2 ≤ · · · ≤ fn.

Suppose an optimal solution includes activity ak .

This generates two subproblems:

Selecting from a1, . . . , ak−1, activities compatible with one
another, and that finish before ak starts (compatible with ak).
Selecting from ak+1, . . . , an, activities compatible with one
another, and that start after ak finishes.

The solutions to the two subproblems must be optimal.

Prove using the cut-and-paste approach.

Nurit Haspel CS624 - Analysis of Algorithms

Optimal Substructure

Let Sij = subset of activities in S that start after ai finishes
and finish before aj starts.

Subproblems: Selecting maximum number of mutually
compatible activities from Sij .

Let c[i,j] = size of maximum-size subset of mutually
compatible activities in Sij .

The recursive solution is:

c[i , j] =

{
0 if Sij = ∅
maxi<k<j{c[i , k] + c[k , j] + 1} otherwise

Nurit Haspel CS624 - Analysis of Algorithms

Greedy Choice Property

The problem also exhibits the greedy-choice property.

There is an optimal solution to the subproblem Sij , that
includes the activity with the smallest finish time in set Sij .

It can be proved easily (how?).

Hence, there is an optimal solution to S that includes a1.

Therefore, make this greedy choice without solving
subproblems first and evaluating them.

Solve the subproblem that ensues as a result of making this
greedy choice.

Combine the greedy choice and the solution to the
subproblem.

Nurit Haspel CS624 - Analysis of Algorithms

Recursive Solution

Algorithm 2 Recursive-Activity-Selector (s, f, i, j)

1: m← i + 1
2: while m < j and sm < fi do
3: m← m + 1
4: end while
5: if m < j then
6: return am ∪ Recursive − Activity − Selector(s, f ,m, j)
7: else
8: return ∅
9: end if

Top level call: Recursive − Activity − Selector(s, f , 0, n + 1)

Complexity??

See text for iterative version

Nurit Haspel CS624 - Analysis of Algorithms

Typical Steps

Cast the optimization problem as one in which we make a
choice and are left with one subproblem to solve.

Prove that there is always an optimal solution that makes the
greedy choice, so that the greedy choice is always safe.

Show that greedy choice and optimal solution to subproblem
⇒ optimal solution to the problem.

Make the greedy choice and solve top-down.

May have to preprocess input to put it into greedy order.

Example: Sorting activities by finish time.

Nurit Haspel CS624 - Analysis of Algorithms

