
CS624 - Analysis of Algorithms

BFS

November 5, 2025

Nurit Haspel CS624 - Analysis of Algorithms

Graphs – Basic Definitions

Graph G = (V ,E)

V = set of vertices, E = set of edges ⊆ (V × V)

Undirected graph: edge (u, v) = (v , u); for all v, (v , v) ̸∈ E
(No self loops.)

Directed graph: (u, v) is edge from u to v, denoted as u → v .
Self loops are allowed.

Weighted graph: each edge has an associated weight, given by
a weight function w : E → R.
Dense graph: |E | ≈ |V |2.
Sparse: |E | ≪ |V |2.
|E | = O(|V |2)

Nurit Haspel CS624 - Analysis of Algorithms

Graphs – Basic Definitions

If (u, v) ∈ E , then vertex v is adjacent to vertex u.

Adjacency relationship is symmetric if G is undirected, not
necessarily so if G is directed.

G is connected if there is a path between every pair of vertices.

In this case |E | ≥ |V | − 1.

Furthermore, if |E | = |V | − 1, then G is a tree.

Other definitions in Appendix B (B.4 and B.5) as needed.

Nurit Haspel CS624 - Analysis of Algorithms

Graph Search Algorithms

Searching a graph: Systematically follow the edges of a graph
to visit the vertices of the graph.

Used to discover the structure of a graph.

Standard graph-searching algorithms:

Breadth-first Search (BFS).
Depth-first Search (DFS).

Nurit Haspel CS624 - Analysis of Algorithms

Breadth-First Search (BFS)

Let G be an undirected graph.

One way to represent a graph is by a set adjacency lists, one
for each vertex.

For each vertex v ∈ V , we have a list Adj [v] consisting of
those vertices u such that (v , u) ∈ E .

It is actually a set, but usually implemented as a list.

This representation works just as well for directed graphs.

In this case, the edge (v , u) means the edge starting from v
and ending at u.

BFS scans the graph G , starting from some arbitrary node s.

The key mechanism in this algorithm is the use of a queue,
denoted by Q.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm

Algorithm 1 BFS(G , s)
1: for each vertex u ∈ V [G] \ s do

2: Color [u]← White

3: d [u]←∞
4: π[u]← nil

5: end for
6: Color [s]← Gray

7: d [s]← 0

8: π[s]← nil

9: Q ← ∅
10: Enqueue(Q, s)

11: while Q ̸= ∅ do

12: u ← Dequeue(Q)

13: for each v ∈ Adj[u] do

14: if Color [v] == White then

15: Color [v]← Gray

16: d [v]← d [u] + 1

17: π[v]← u

18: Mark the edge from π[v] to u as a “tree edge”.

19: Enqueue(Q, v)

20: end if
21: end for
22: Color [u]← Black

23: end while

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm

Expands the frontier between discovered and undiscovered
vertices uniformly across the breadth of the frontier.

A vertex is “discovered” the first time it is encountered during
the search.

A vertex is “finished” if all vertices adjacent to it have been
discovered.

Colors the vertices to keep track of progress.

White – Undiscovered.

Gray – Discovered but not finished.

Black – Finished.

Colors are required only to reason about the algorithm. Can
be implemented without colors.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Example

v w x y

r s t u

∞ ∞ ∞ ∞

∞ 0 ∞ ∞
Q s

0

Note that all nodes are initially colored white.

A node is colored gray when it is placed on the queue.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Example

v w x y

r s t u

∞ 1 ∞ ∞

1 0 ∞ ∞
Q w

1

r

1

A node is colored black when taken off the queue.

Nodes colored white have not yet been visited. The nodes
colored black are “finished” and the nodes colored gray are
still being processed.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Example

v w x y

r s t u

∞ 1 2 ∞

1 0 2 ∞
Q r

1

t

2

x

2

When a node is placed on the queue, the edge from the first
node in the queue (which is being taken off the queue) to that
node is marked as a tree edge in the breadth-first tree.

These edges actually do form a tree (called the breadth-first
tree) whose root is the start node s.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Example

v w x y

r s t u

2 1 2 ∞

1 0 2 ∞
Q t

2

x

2

v

2
v w x y

r s t u

2 1 2 ∞

1 0 2 3

Q x

2

v

2

u

3

v w x y

r s t u

2 1 2 3

1 0 2 3

Q v

2

u

3

y

3
v w x y

r s t u

2 1 2 3

1 0 2 3

Q u

3

y

3

v w x y

r s t u

2 1 2 3

1 0 2 3

Q y

3
v w x y

r s t u

2 1 2 3

1 0 2 3

Q Φ

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Runtime and Properties

Each node is visited once and each edge is examined at most
twice.

Therefore the cost is O(|V |+ |E |).
Proof of correctness:

Lemma

If G is connected, then the breadth-first tree constructed by this
algorithm

Really is a tree

It contains all the nodes in the graph.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Proof of Correctness

Proof.

A node becomes the target of a tree edge when it is placed on
the queue.

Since that only happens once, no node is the target of two
tree edges.

Next, let us show that every node that is processed by the
algorithm is reachable by a chain of tree edges from the root.
It is enough to prove the following statement:

When a node is placed on the queue, it is reachable by a
chain of tree edges from the root.

It is clearly true at the beginning: There is only one node in
the queue and it is the root. The rest can be shown by
induction.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Proof of Correctness

Cont.

Suppose it is true up to some point.

When the next node v is placed on the queue, v is an
endpoint of an edge whose other endpoint is the node at the
head of the queue, and that edge is made a tree edge.

By the inductive assumption, the node at the head of the
queue is reachable by a path of tree edges from the root.

Appending the new edge to the path gives a path of tree
edges from the root to v .

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Proof of Correctness

Cont.

Every node that is processed by the algorithm is reachable by a
chain of edges from the root – so the edges form a tree.

Suppose there was one node v that was not reached by this process.

Since G is connected, there would have to be a path from the root
to v .

On that path there is a first node (w) which was not in the tree.

That node might be v , or it might come earlier in the path.

That means that the edge in the path leading to that node starts
from a node in the tree.

At some point, that node in the tree was at the head of the queue.

Therefore, w would have been placed in the queue by the algorithm,
and the edge to w would have been a tree edge – a contradiction.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Proof of Correctness

Lemma

If at any point in the execution of the BFS algorithm the queue
consists of the vertices {v1, v2, . . . , vn}, where v1 is at the head of
the queue, then d [vi] ≤ d [vi+1] for 1 ≤ i ≤ n − 1, and
d [vn] ≤ d [v1|+ 1.

In other words, the assigned depth numbers increase as one
walks down the queue, and there are at most two different
depths in the queue at any one time.

If there are two, they are consecutive.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Proof of Correctness

Proof.

The result is true trivially at the start of the program, since
there is only one element in the queue. The rest by induction.

At any step, a vertex is added to the tail of the queue only
when it is reachable from the vertex at the head (which is
being taken off).

The depth assigned to the new vertex at the tail is 1 more
than that of the vertex at the head.

By the inductive hypothesis it is greater than or equal to the
depths of any other vertex on the queue, and no more than 1
greater than any of them.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Proof of Correctness

Lemma

If two nodes in G are joined by an edge in the graph (which might
or might not be a tree edge), their d values differ by at most 1.

Proof.

Let the nodes be v and u. One of them is reached first in the
breadth-first walk.

w.l.o.g, say v is reached first. So v is put on the queue first,
and reaches the head of the queue before u does. When v
reaches the head of the queue, there are two possibilities:

u has not yet been reached. In that case, when we take v off
the queue, since there is an edge from v to u, u will be put on
the queue and we will have d [u] = d [v] + 1.
u has been reached and therefore is on the queue. In this case,
we know from the previous lemma that d [v] ≤ d [u] ≤ d [v] + 1.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Proof of Correctness

Theorem

If G is connected, then the breadth-first search tree gives the
shortest path from the root to any node.

Proof.

We know there is a path in the tree from the root to any node.

The depth of any node in the tree is the length of the path in
the tree from the root to that node.

So for each node v in the tree, we have

d [v] = the length of the path in the tree from the root to v

and let us set

s[v] = the length of the shortest path in G from the root to v

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Proof of Correctness

Cont.

We are trying to prove that d [v] = s[v] for all v ∈ G .

We know just by the definition of s[v] that s[v] ≤ d [v] for all
v .

Suppose there is at least one node for which the theorem is
not true.

All the nodes w for which the statement of the theorem is not
true satisfy s[w] < d [w].

Among all those nodes, pick one – call it v – for which s[v] is
smallest.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm – Proof of Correctness

Cont.

Let u be the node preceding v on a shortest path from the
root to v .

We have

d [v] > s[v]

s[v] = s[u] + 1

s[u] = d [u]

Hence d [v] > s[v] = s[u] + 1 = d [u] + 1.

But by former lemma, this is impossible.

Nurit Haspel CS624 - Analysis of Algorithms

Print Shortest Path

We assume that BFS(G , s) has already been run, so that each
node x has been assigned its depth d [x].

Algorithm 2 PrintPath(G , s, v)

1: if v = s then
2: PRINT s
3: else
4: if π[v] == nil then
5: PRINT “no path from” s “to” v “exists”
6: else
7: PrintPath(G , s, π[v])
8: PRINT v
9: end if

10: end if

The cost of this algorithm is proportional to the number of vertices
in the path, so it is O

(
d [v]

)
.

Nurit Haspel CS624 - Analysis of Algorithms

