CS624 - Analysis of Algorithms

BFS

November 5, 2025

Nurit Haspel CS624 - Analysis of Algorithms

Graphs — Basic Definitions

e Graph G = (V,E)

@ V = set of vertices, E = set of edges C (V x V)

e Undirected graph: edge (u,v) = (v,u); for all v, (v,v) ¢ E
(No self loops.)

o Directed graph: (u,v) is edge from u to v, denoted as u — v.
Self loops are allowed.

o Weighted graph: each edge has an associated weight, given by
a weight function w : E — R.

o Dense graph: |E| ~ |V|?.
e Sparse: |[E| < |V|2.
o |[El=0O(IVP)

Nurit Haspel CS624 - Analysis of Algorithms

Graphs — Basic Definitions

If (u,v) € E, then vertex v is adjacent to vertex u.

Adjacency relationship is symmetric if G is undirected, not
necessarily so if G is directed.

G is connected if there is a path between every pair of vertices.
In this case |E| > |V| — 1.

Furthermore, if |[E| = |V| — 1, then G is a tree.

Other definitions in Appendix B (B.4 and B.5) as needed.

Nurit Haspel CS624 - Analysis of Algorithms

Graph Search Algorithms

@ Searching a graph: Systematically follow the edges of a graph
to visit the vertices of the graph.

@ Used to discover the structure of a graph.

o Standard graph-searching algorithms:

o Breadth-first Search (BFS).
o Depth-first Search (DFS).

Nurit Haspel CS624 - Analysis of Algorithms

Breadth-First Search (BFS)

@ Let G be an undirected graph.

@ One way to represent a graph is by a set adjacency lists, one
for each vertex.

o For each vertex v € V, we have a list Adj[v] consisting of
those vertices u such that (v, u) € E.

o It is actually a set, but usually implemented as a list.
@ This representation works just as well for directed graphs.

@ In this case, the edge (v, u) means the edge starting from v
and ending at u.

@ BFS scans the graph G, starting from some arbitrary node s.

@ The key mechanism in this algorithm is the use of a queue,
denoted by Q.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm

Algorithm 1 BFS(G,s)

. for each vertex u € V[G] \ s do
Color[u] <~ White

d[u] + oo

7[u] < nil

. end for

. Color[s] « Gray

D d[s] < 0

. w[s] <« nil

Q<+ @

10: Enqueue(Q, s)

11: while @ # @ do

1 u < Dequeue(Q)

13: for each v € Adj[u] do

14: if Color[v] == White then

15: Color[v] < Gray

16: d[v] « d[u] + 1

17: w[v] < u

18: Mark the edge from 7[v] to u as a “tree edge”.
19: Enqueue(Q, v)

20: end if

21: end for

22: Color[u] + Black

23: end while

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm

o Expands the frontier between discovered and undiscovered
vertices uniformly across the breadth of the frontier.

@ A vertex is “discovered” the first time it is encountered during
the search.

@ A vertex is “finished” if all vertices adjacent to it have been
discovered.

Colors the vertices to keep track of progress.
White — Undiscovered.

Gray — Discovered but not finished.

Black — Finished.

Colors are required only to reason about the algorithm. Can
be implemented without colors.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Example

T S t u
— (99—
|/|/| ¢ H
@ —
w Yy

@ Note that all nodes are initially colored white.

@ A node is colored gray when it is placed on the queue.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Example

pbol

v w ?/

@ A node is colored black when taken off the queue.

@ Nodes colored white have not yet been visited. The nodes
colored black are “finished” and the nodes colored gray are
still being processed.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Example

T S t u

‘—

/ [@
‘ 1 2 2

w x Yy

@ When a node is placed on the queue, the edge from the first
node in the queue (which is being taken off the queue) to that
node is marked as a tree edge in the breadth-first tree.

@ These edges actually do form a tree (called the breadth-first
tree) whose root is the start node s.

Nurit Haspel CS624 - Analysis of Algorithms

<Q
o
£
(4]
X
Ll
I
£
e
2
-
(@)
&
<
)
L
m
()
=
T

t u
%4
[& 20

CS624 - Analysis of Algorithms

Nurit Haspel

The BFS Algorithm — Runtime and Properties

@ Each node is visited once and each edge is examined at most
twice.
@ Therefore the cost is O(|V/| + |EJ).

@ Proof of correctness:

If G is connected, then the breadth-first tree constructed by this
algorithm

® Really is a tree
o [t contains all the nodes in the graph.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Proof of Correctness

@ A node becomes the target of a tree edge when it is placed on
the queue.

@ Since that only happens once, no node is the target of two
tree edges.

o Next, let us show that every node that is processed by the
algorithm is reachable by a chain of tree edges from the root.
It is enough to prove the following statement:

@ When a node is placed on the queue, it is reachable by a
chain of tree edges from the root.

@ It is clearly true at the beginning: There is only one node in
the queue and it is the root. The rest can be shown by
induction.

4

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Proof of Correctness

@ Suppose it is true up to some point.

@ When the next node v is placed on the queue, v is an
endpoint of an edge whose other endpoint is the node at the
head of the queue, and that edge is made a tree edge.

@ By the inductive assumption, the node at the head of the
queue is reachable by a path of tree edges from the root.

@ Appending the new edge to the path gives a path of tree
edges from the root to v.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Proof of Correctness

@ Every node that is processed by the algorithm is reachable by a
chain of edges from the root — so the edges form a tree.

@ Suppose there was one node v that was not reached by this process.

@ Since G is connected, there would have to be a path from the root
to v.

@ On that path there is a first node (w) which was not in the tree.
@ That node might be v, or it might come earlier in the path.

@ That means that the edge in the path leading to that node starts
from a node in the tree.

@ At some point, that node in the tree was at the head of the queue.

@ Therefore, w would have been placed in the queue by the algorithm,
and the edge to w would have been a tree edge — a contradiction.

V.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Proof of Correctness

If at any point in the execution of the BFS algorithm the queue
consists of the vertices {vi,va, ..., vp}, where vy is at the head of
the queue, then d|v;] < d[vi41] for 1 <i<n-—1, and

d[V,,] < d[v1| + 1.

@ In other words, the assigned depth numbers increase as one
walks down the queue, and there are at most two different
depths in the queue at any one time.

o If there are two, they are consecutive.

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Proof of Correctness

@ The result is true trivially at the start of the program, since
there is only one element in the queue. The rest by induction.

@ At any step, a vertex is added to the tail of the queue only
when it is reachable from the vertex at the head (which is
being taken off).

@ The depth assigned to the new vertex at the tail is 1 more
than that of the vertex at the head.

o By the inductive hypothesis it is greater than or equal to the
depths of any other vertex on the queue, and no more than 1
greater than any of them.

L]

V

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Proof of Correctness

If two nodes in G are joined by an edge in the graph (which might
or might not be a tree edge), their d values differ by at most 1.)
(Poof
@ Let the nodes be v and u. One of them is reached first in the
breadth-first walk.

@ w.l.o.g, say v is reached first. So v is put on the queue first,
and reaches the head of the queue before u does. When v
reaches the head of the queue, there are two possibilities:

o u has not yet been reached. In that case, when we take v off
the queue, since there is an edge from v to u, u will be put on
the queue and we will have d[u] = d[v] + 1.

o u has been reached and therefore is on the queue. In this case,
we know from the previous lemma that d[v] < d[u] < d[v] + 1.

L]

v

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Proof of Correctness

If G is connected, then the breadth-first search tree gives the
shortest path from the root to any node.

4

@ We know there is a path in the tree from the root to any node.

@ The depth of any node in the tree is the length of the path in
the tree from the root to that node.

@ So for each node v in the tree, we have

d[v] = the length of the path in the tree from the root to v

and let us set

s[v] = the length of the shortest path in G from the root to v

Ol

Nurit Haspel CS624 - Analysis of Algorithms

V.

The BFS Algorithm — Proof of Correctness

@ We are trying to prove that d[v] = s[v] for all v € G.

@ We know just by the definition of s[v] that s[v] < d[v] for all
v.

@ Suppose there is at least one node for which the theorem is
not true.

@ All the nodes w for which the statement of the theorem is not
true satisfy s[w]| < d[w].

@ Among all those nodes, pick one — call it v — for which s[v] is
smallest.

Ol

4

Nurit Haspel CS624 - Analysis of Algorithms

The BFS Algorithm — Proof of Correctness

@ Let u be the node preceding v on a shortest path from the

root to v.
o We have
dlv] > s[v]
slv] =s[u] +1
s[u] = d[u]

@ Hence d[v] > s[v] = s[u] + 1 = d[u] + 1.
@ But by former lemma, this is impossible.

]

Nurit Haspel CS624 - Analysis of Algorithms

Print Shortest Path

We assume that BFS(G, s) has already been run, so that each
node x has been assigned its depth d[x].

Algorithm 2 PrintPath(G,s, v)
1. if v =s then
PRINT s
. else
if w[v] == nil then
PRINT “no path from” s “to” v “exists”

2

3

4

5

6 else

7: PrintPath(G, s, [v])
8

9

10:

PRINT v
end if
end if

The cost of this algorithm is proportional to the number of vertices
in the path, so it is O(d[v]).

Nurit Haspel CS624 - Analysis of Algorithms

