(CS310 - Advanced Data Structures and

Algorithms

Flow Networks

December 8, 2021

Definition — Flow Networks

A flow graph is a directed graph with two distinguished
vertices, s (the “source”) and t (the “sink” or “target”).

@ We also assume that There is at least one path from s to t.

@ In fact, even more is true: for each node u in the graph, there
is at least one path from s through u.

@ Every edge has a positive capacity

@ You can think of the edge as a pipe and the capacity as the
maximum amount of material that can flow through the pipe
at any moment.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Definition — Flow Networks

A flow graph is a directed graph with two distinguished
vertices, s (the “source”) and t (the “sink” or “target”).

@ We also assume that There is at least one path from s to t.

@ In fact, even more is true: for each node u in the graph, there
is at least one path from s through u.

@ Every edge has a positive capacity

@ You can think of the edge as a pipe and the capacity as the
maximum amount of material that can flow through the pipe
at any moment.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Example — Flow Networks

>f

10 15

S)

=
S0

10

i
N,
\4}_&/

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Definition — s-t Flow

@ An st-flow (flow) is an assignment of values to the edges such
that:

@ Capacity constraint: For every edge, 0 < flow < capacicy

@ Local equilibrium: inflow = outflow at every vertex (except s
and t)

@ In the following example: inflow at v=>5 4+ 5 4+ 0 = 10.
Outflow = 10 + 0 = 0.

@ Number on the left — flow. Number on the right — capacity.
@ The value of the flow is the flow going into t (or out of s).
@ In the example below, the value of the flow is 5+10+10=25.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Example — s-t flow

AN

10/10 0/4 3/1 U 5/10
s 5/5 ,L .3,/>
10/15 0/4 0/6 (),f'm 10/10

\é— 10/16>o/

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Definition — max-flow

@ The max-flow problem is to find the flow with maximum
capacity.

@ In real life — find the maximum amount of
supply/data/materials you can deliver at one time.

@ In the example below the max-flow is 28.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Example — max-flow

)
7

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Definition — A Cut

@ an st-cut (or cut) is a a partition of the vertices into two
disjoint sets A and B, with sin A and t in B.

@ The other vertices can go either way.

@ The capacity of the cut is the sum of the capacities of the
edges from A to B.

@ The Minimum st-cut (mincut) problem: Find a cut of
minimum capacity.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Example — Cuts

i

10

5 — t

15

Capacity: 30 N

10

Capacity: 34

O—— 16
/

10

10

Capacity: 28 ¢

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Max-flow Min-cut Duality

@ The two problems are duall!

@ The value of the maximum flow = capacity of minimum cut.

AN

10/10 0/4 2/15 0/15 8/10

Géta/ts—ﬁlis/g—»1 10 }‘

13/15 0/4 3/6 0/15 10/10

\é— 13/1(N/

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Relationships Between Flows and Cuts

@ The net flow across a cut (A,B) is the sum of the flow on the
edges from A to B, minus the sum of the flow on the edges
from B to A.

@ See two examples below:

Net flow = 25 Net flow = 35 - 10 = 25
5/9 —— —5/9
TN ﬁ\ /T\ N
10/10 0/4 5/15 0/10 5 u 10/10 0/4 5/15 0/15 5/10
:é | :é J ~ N
5/5 — 5/8— 10 m—»‘ 5/5 — 5/8 — 10/107
10/15 0/4 0/6 0/15 10/10 10/15 0/4 0/6 0/15 10/10

\(J.)— 10/1634/ \L IO/IGN/

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Relationships Between Flows and Cuts

e Flow-value lemma: Let f be any flow and let (A, B) be any
cut. Then, the net flow across (A, B) equals the value of f.

@ Intuition: Conservation of flow (and the fact that s is in A
and tis in B).
@ Proof: By induction on the size of B.
o Base case: True for B = {t}.
e Induction step: remains true by local equilibrium when moving
any vertex from A to B.
@ Corollary: Outflow from s = inflow to t = value of flow.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Relationships Between Flows and Cuts

e Weak Duality: Let f be any flow and let (A,B) be any cut.
Then, the value of the flow is < the capacity of the cut.

@ Proof: Value of flow f = net flow across cut (A, B) <
capacity of cut (A, B) (since the flow is bound by the

capacity).
Value of flow = 27 Capacity of cut = 30
Kg/g—?
/ /
10/10 0/4 2/15 0/15 8/10 10
| N ™~
5/5—>T\< 7/8 —»T— 9/107@ 5 t
12/15 0/4 2/6 0/15 10/10 15

‘o—l 12/16 >d1 \O—>

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Augmenting Paths

e An Augmenting path is a path from s to t that can be used to
increase the s-t flow.

e The bottleneck capacity is the minimum residual (remaining)
capacity of an edge on a path.
Ford-Fulkerson’s algorithm for max-flow:
Start with O flow.

While there are augmenting paths: Find an augmenting path.
Find the bottleneck capacity across the path.
Increase the flow across the path by the bottleneck capacity.

Update residual graph.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Residual Graphs

@ Given a flow network, the residual graph shows us how much
could the flow on each edge in either direction.

@ Notice that every edge is replaced by two anti-parallel edges.

@ The forward edge goes in the direction of the original edge in
the flow graph and tells us how much we can still flow.

@ This number is the capacity minus current flow.

@ The backwards edge goes in the opposite direction and tells
us how much we can "return”.

@ This number is the current flow, but pointing in the opposite
direction.

@ For convenience, if any number is 0, we will omit it.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Start with O flow. The graph is the original flow graph (backward
edges are empty since we did not flow anything):

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

The first augmenting path is calculated The bottleneck capacity is
10. The residual graph is shown below.

NI

10/10 0/4 10/15 0/15 0/10

S

0/15 ()/4 0/6 0/15 0/10

N 0/16¥$/
ST
5 l 10 t
: T\ T >O

15

\o_\/

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

The second augmenting path is calculated The bottleneck capacity
is 10. The residual graph is shown below.

Y
L
Va
\

6

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

The third augmenting path is calculated The bottleneck capacity is

5. The residual graph is shown below.
5/ 9 mm—

5

I(J/ﬁ‘ = 5/10

11 5/10%1J 5/

5/ —> 5 8 10 7

5

\\wa

<—10
5

\

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

The fourth augmenting path is calculated The bottleneck capacity

is 3. There are no more augmenting paths. Done.
3/4 ~—

—
w ot
Rag =]
ot
j——
w
w o~
ot ~— O
fA/,_.
)
1
—_ >~
=) ot

4 3 15 10
13 1/_13 /
3

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

The final flow graph can be obtained by " collapsing” the pairs of
edges in the final residual graph.

/N 8/9—(f\

10/10 0/4 2/15 0/15 8/10

8/8 \TL 10/10

13/15 0/4 3/6 0/15 10/10

13 /16><L/

~

s 5/5

/
e

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Calculating Augmenting Paths

The augmenting paths are calculated on the residual graph!

To update the residual graph, subtract the flow from the
forward edge, add the flow to the backwards edge.

We are done when there are no paths from s to t on the
residual graph.

The flow can be calculated as the flow out of s or into t.

But how do we get the minimum cut?

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Calculating The Min-Cut

@ Once the max-flow is calculated, the min-cut can be extracted
as follows:

@ Subset A contains s and all the vertices accessible from it
when the maximum flow is applied.

@ That is, no full forward edges or empty backwards edges.

@ Subset B contains the rest of the vertices (those not
accessible by s).

e This is a legitimate cut, since t must be on side B (why?).

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Calculating The Min-Cut

/N S/Q—T\

10/10 0/4 2/15 0/15 8/10

S

13/15 0/4 3/6 0/15 10/10

\l— 13/16N/

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Max-flow Min-cut theorem

@ The augmenting paths theorem: A flow f is a max flow iff
there are no augmenting paths.

@ The Max-flow Min-cut theorem: The value of the max
flow = capacity of the min cut.

@ Proof: We will show the the following three statements are
equivalent for a flow f:

@ There exists a cut whose capacity equals the value of the flow
@ fis a max flow.
© There is no augmenting path with respect to f

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Proof of Max-flow Min-cut theorem

1 —2: e Suppose (A,B) is a cut with capacity equal to the value of f
e Then, the value of any flow f’ < capacity(A, B) = f (by weak
duality above)
e Thus, fis a maxflow.

2 — 3: (we will show contra-positive)

Suppose that there is an augmenting path with respect to f
We can improve f by sending flow along this path.
e Thus, fis not a maxflow.

3—1:

Let (A,B) be a cut where A is the set of vertices accessible by
s.

By definition of cut, s is in A

Since no augmenting path, tis in B

Capacity of cut = net flow across cut = value of flow f
(because all forward edges full and all backward edges empty,
hence cut at full capacity by flow.)

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Analysis of Ford-Fulkerson's Algorithm

Notice that the algorithm is not very specific about how to
find the paths.

Also, it doesn't say in what order to apply the paths.
Does it even always terminate? And how fast?

In practice, BFS or DFS is a good way to find paths.

When capacities are integer, the algorithm is guaranteed to
terminate.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Ford-Fulkerson's Algorithm with Integer Capacities

Edge capacities are all integers.
Hence, bottleneck capacities are integers too.
Flow changes by an integer.

Every augmentation increases the flow by at least 1.

Hence, the number of augmentations is bound by the value of
max-flow and the algorithm will terminate.

@ From this we conclude that there is an integer-valued max
flow, and it will be found by FF's algorithm.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

A Bad Example

@ The algorithm indeed terminates, but how long does it take?

@ Some unfortunate choices can make the number of
augmentations = max flow.

/@\

100 100

@ See example below:

100 100
%/

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

A Bad Example

?

1/100 0/100 1/100 1/100
< N /L >
1/1 /9 c\ 11
0/100 1/100 1/100 1/100
1 2
2/100 1/100 2/100 2/100
<< 11 >° < 1 >
1/100 2/100 2/100 2/100

. o 4

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

<

A Bad Example

The max flow is 200.

A not-very-smart choice of paths will make the algorithm run
200 times...

A smart choice — only 2 iterations.

How do you choose augmenting paths?

There is no clear-cut way that always works.

Some heuristics: Shortest paths (BFS, for minimum number
of edges), fattest paths (Priority queue, max. bottleneck
capacity), DFS, etc.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Implementation — Flow Edge

o FlowEdge associates a flow f. and capacity c. with edge
e=v—ow

Must be able to process edge e in either direction: include e in
adjacency lists of both v and w.

Forward edge: residual capacity = c. — fe
Backward edge: residual capacity = f.
Augment Flow: Add A to Forward edge.
Subtract A from Backward edge.

Forward edge Residual capacity

E(ié@ O—7n—®
I]

foce
Backwards edge

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Implementation — Flow Edge

public class FlowEdge

FlowEdge(int v, int w, double capacity) //create a flow edge v-w

int from() // vertex this edge points from

int to() // vertex this edge points to

int other(int v) // other endpoint

double capacity() // capacity of this edge

double flow() // flow in this edge

double residualCapacityTo(int v) // residual capacity toward v

void addResidualFlowTo(int v, double delta) // add delta flow
toward v

Forward edge Residual capacity

E(ié@ O—1n—0®
ya]

fece
Backwards edge

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Implementation — Flow Edge

public class FlowEdge

{

private final int v, w; // from and to
private final double capacity;
private double flow;

public FlowEdge(int v, int w, double capacity) {
this.v = v;
this.w = w;
this.capacity = capacity;

}
public int from() { return v;}
public int to() { return w;}

public double capacity() { return capacity;}
public double flow() { return flow;}
public int other(int vertex) {

if (vertex == v) return w;

else if (vertex == w) return v;

else throw new IllegalArgumentException();
} // TBC Next slide

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Implementation — Change Flow

public double residualCapacityTo(int vertex)

{
if (vertex == v) return flow; // Forward edge
else if (vertex == w)
return capacity - flow; // Backward edge
else throw new IllegalArgumentException();
}

public void addResidualFlowTo(int vertex, double delta)
{
if (vertex == v) flow -= delta; // Forward edge
else if (vertex == w)
flow += delta; // Backward edge
else throw new IllegalArgumentException();

}

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Implementation — Flow Network

public class FlowNetwork

// create an empty flow network with V vertices
FlowNetwork(int V)

FlowNetwork(In in) // construct flow network input stream
void addEdge(FlowEdge e) // add flow edge e to this flow network
// forward and backward edges incident to v
Iterable<FlowEdge> adj(int v)

Iterable<FlowEdge> edges() // all edges in this flow network
int V() //number of vertices

int E() // number of edges

String toString() // String representation

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Implementation — Flow Network

public class FlowNetwork
{
private final int V;
private Bag<FlowEdge>[] adj;
public FlowNetwork(int V) {
this.V = V;
adj = (Bag<FlowEdge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<FlowEdge>();
}
public void addEdge(FlowEdge e) {
int v = e.from();
int w = e.to();
adjlv].add(e);
adj[w].add(e);
}
public Iterable<FlowEdge> adj(int v)
{ return adjlvl; }
}

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Adjacency List Representation

@ Note: Adjacency list includes edges with 0 residual capacity.
(residual network is represented implicitly)

o Every edge is referenced twice.

tinyFN.txt

vow e f
g i \~<0 2 ;z.n‘mHo‘l 20 20‘ ‘Ba/gr)hjnt
0 1 20 of \~<1‘4‘1.0‘0.0H1‘3‘3.0‘2.“H1‘4‘1_0",_0‘
0 2 30 !
1 3 3.0 27/\‘2‘4‘1.0‘1.0}—{2‘3‘1.0‘0.0}—{0‘2‘3_0‘[_0‘
{410 LRI LCLERL LG
; i 18 NN oo e [oo L [o]
3 5 20 N s e[s] s [ae]e
4 5 3.0

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Ford-Fulkerson

public class FordFulkerson

{
private boolean[] marked; // true if s->v path in res. network
private FlowEdge[] edgeTo; // last edge on s->v path
private double value; // value of flow

public FordFulkerson(FlowNetwork G, int s, int t) {
value = 0.0;
while (hasAugmentingPath(G, s, t)) {
double bottle = Double.POSITIVE_INFINITY;
for (int v = t; v != s; v = edgeTo[v].other(v))
bottle = Math.min(bottle,
edgeTo[v] .residualCapacityTo(v));
for (int v = t; v != s; v = edgeTo[v].other(v))
edgeTo[v] .addResidualFlowTo (v, bottle);
value += bottle;

}
public boolean inCut(int v) { return marked[v];}
// TBC next slide

}

Find Augmenting Path via BFS

private boolean hasAugmentingPath(FlowNetwork G, int s, int t) {
edgeTo = new FlowEdgel[G.V()];
marked = new boolean[G.V()];
Queue<Integer> queue = new Queue<Integer>();
queue. enqueue(s) ;
marked[s] = true;
while (!'queue.isEmpty()) {
int v = queue.dequeue();
for (FlowEdge e : G.adj(v)) {
int w = e.other(v);
if (!'marked[w] && (e.residualCapacityTo(w) > 0)) {
edgeTo[w] = e;
marked[w] = true;
queue . enqueue (W) ;

}
}
}
return marked[t]; // is t reachable from s in residual
network?

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Applications — Bipartite Matching

@ Problem: N people apply to N jobs, each person may get
several offers.
@ Question: Is there a way to perfectly match people and jobs?

1 Alice 6 Adobe
Adobe Alice
Amazon Bob
Google Carol
2 Bob 7 Amazon
Adobe Alice
Amazon Bob
3 Carol Dave
Adobe Eliza
Facebook 8 Facebook
Google Carol
4 Dave 9 Google
Amazon Alice
Yahoo Carol
5 Eliza 10 Yahoo
Amazon Dave
Yahoo Eliza

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Applications — Bipartite Matching

Perfect matching

Alice - Google)
Bob — Adobe 1 Alice 6 Adobe .
Carol — Facebook Adobe Alice
Amazon Bob
D;lave — Yahoo Google Carol
Eliza - Amazon 2 Bob 7 Amazon
Adobe Alice
Students Companies Amazon Bob
3 Carol Dave
Adobe Eliza
Facebook 8 Facebook
Google Carol
4 Dave 9 Google
Amazon Alice
Yahoo Carol
5 Eliza 10 Yahoo
Amazon Dave
Yahoo Eliza

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Network Flow Formulation of Bipartite Matching

@ Create s, t, one vertex for each student, and one vertex for
each job.

@ Add edge from s to each student (capacity 1).
@ Add edge from each job to t (capacity 1).
@ Add edge from student to each job offered (infinite capacity).

. 1 Alice 6 Adobe
Students Companies Adobe Alice
Amazon Bob
Google Carol
2 Bob 7 Amazon
Adobe Alice
Amazon Bob
3 Carol Dave
Adobe Eliza
Facebook 8 Facebook
Google Carol
4 Dave 9 Google
Amazon Alice
Yahoo Carol
5 Eliza 10 Yahoo
Amazon Dave
Yahoo Eliza

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

Network Flow Formulation of Bipartite Matching

1-1 correspondence between perfect matchings in bipartite graph
and integer-valued maxflows of value N

Flow graph Bipartite matching problem
Students Companies 1 Alice 6 Adobe
Adobe Alice
Amazon Bob
Google Carol
2 Bob 7 Amazon
Adobe Alice
Amazon Bob
3 Carol Dave
Adobe Eliza
Facebook 8 Facebook
Google Carol
4 Dave 9 Google
Amazon Alice
Yahoo Carol
5 Eliza 10 Yahoo
Amazon Dave
Yahoo Eliza

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

What the mincut Tells Us

@ Goal: When no perfect matching, explain why.

e S=1{2,4,5} and T = {7,10}.

@ Student in S can be matched only to companies in T and
S1>|T|

@ No perfect matching exists.

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

What the mincut Tells Us

Consider mincut (A, B).
Let S = students on s side of cut.

Let T = companies on s side of cut.

Fact: |S| > |T|; students in S can be matched only to
companies in T.

@ Bottom line: When no perfect matching, mincut explains
why

Nurit Haspel CS310 - Advanced Data Structures and Algorithms

