
Final Review

CS634

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Coverage

 Text, chapters 8 through 18, 25 (hw1 – hw6)

 PKs, FKs, E-R to Relational: Text, Sec. 3.2-3.5, to pg. 77 inclusivel, hw1

 Basics of Disks and RAID

 Indexing: Hash Index, B+Tree, hw2, hw3

 Cloud VM, mysql DBA actions, hw3

 Query evaluation & optimization, chap 14-15. hw4

See MidtermReview for above. Since midterm exam:

 Transactions, Concurrency Control, chap. 16-17, hw5

 Mysql DBA actions, hw5, hw6

 Crash Recovery, chap 18, hw6

 Data Warehousing and Decision Support, chap 25 to pg. 856, hw6

 Basics of Docker containers, hw6

Highlights of before-midterm coverage

 Disks: idea of cylinders, LBNs running in “next” order

 RAID levels

 Concept of “File”: sequence of pages, possibly on multiple
disks, accessible by random access by page no.

 Unordered “heap”, records have RIDs for random access

 Sorted (less common) by some record key

 Clustered file (nearly sorted by some record key)

 Concept of an index File: has a key for lookup to its records

 Itself can by a heap File or a clustered File (then a clustered index)

 Its records are called “data entries”, three formats listed on pg. 276

 The whole data “row”, which contains the key

 (key, RID) where the data is found by the RID (in another File)

 Book also lists (key, list of RIDs), but this is just a compression

Highlights of before-midterm coverage
 A Table is implemented by one or more Files

 Heap file for data records plus 0 or more non-clustered indexes (themselves in heap files)

 Clustered file for data records (Alt. 1) plus 0 or more non-clustered indexes (themselves
in heap files)

 Clustered file for data entries (Alt. 2) plus heap file in index-sorted order, plus 0 or more
non-clustered indexes.

 A table can have only one clustered index!

 Normally, only one index can be used at a time for access to table data by the
storage engine (we saw this later), so see cases in Chap 8: heap file with unclustered
tree index, heap file with clustered index, etc.

 Chap. 10: concentrate on B-tree case

 Chap. 11: concentrate on linear hashing

 Chap. 12: access path, index matching rules, selectivity, reduction factors, query
plans, including use of indexes

 Chap. 13: external merge sort

 Chap. 14: More on matching indexes, projection by hashing, sorting, join methods

 Chap. 15: Evaluating alternative plans, incl. multiple-index plans, index-only
evaluation.

Architecture of a DBMS

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine: join, sort,…

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

5

Lock Manager
Recovery

Manager

Storage Manager,

Chap 8-11, 16-18

Query Processor
Chap 12-14

Chap 15

Chap 16-17
Chap 18

Single-table Plans With Indexes

 There are four cases:

1. Single-index access path

 Each matching index offers an alternative access path

 Choose one with lowest I/O cost

 Non-primary conjuncts, projection, aggregates/grouping applied
next

2. Multiple-index access path

 Each of several indexes used to retrieve set of rids

 Rid sets intersected, result sorted by page id

 Retrieve each page only once

 Non-primary conjuncts, projection, aggregates/grouping applied
next

Plans With Indexes (contd.)

3. Tree-index access path: extra possible use…

 If GROUP BY attributes prefix of tree index, retrieve tuples in

order required by GROUP BY

 Apply selection, projection for each retrieved tuple, then aggregate

 Works well for clustered indexes

Example: With tree index on rating

SELECT count(*), max(age)
FROM Sailors S
GROUP BY rating

Plans With Indexes (contd.)

3. Index-only access path

 If all attributes in query included in index, then there is no need to

access data records: index-only scan

 If index matches selection, even better: only part of index examined

 Does not matter if index is clustered or not!

 If GROUP BY attributes prefix of a tree index, no need to sort!

 Example: With tree index on rating

 Note count(*) doesn’t require access to row, just RID.

SELECT max(rating),count(*)
FROM Sailors S

Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 100 tuples per page, 1000 pages

 Sailors:

 50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

 Assume index entry size 10% of data record size

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Cost Estimates for Single-Relation Plans

 Sequential scan of file:

 NPages(R)

 Index I on primary key matches selection

 Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index

 Clustered index I matching one or more selects:

 NPages(CI) * product of RF’s of matching selects

Quick estimate: Npages(CI) = 1.1*NPages(TableData)

i.e. 10% more for needed keys

 Non-clustered index I matching one or more selects:

 (NPages(I)+NTuples(R)) * product of RF’s of matching selects

Quick estimate: Npages(I) = .1*Npages(R) (10% of data size)

Example

 File scan: retrieve all 500 pages

 Clustered Index I on rating

(1/NKeys(I)) * (NPages(CI)) = (1/10) * (50+500) pages

 Unclustered Index I on rating

(1/NKeys(I)) * (NPages(I)+NTuples(S)) = (1/10) * (50+40000) pages

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Queries Over Multiple Relations

 In System R only left-deep join trees are considered

 In order to restrict the search space

 Left-deep trees allow us to generate all fully pipelined plans

 Intermediate results not written to temporary files.

 Not all left-deep trees are fully pipelined (e.g., sort-merge join)

BA

C

D

BA

C

D

C DBA

Left-deep

Example of push downs of selections

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND S.rating>5 AND R.bid=100

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Push-down and pipelining

 But note that the right selection may not be best pushed-

down: can’t pipeline inner-table data for indexed NLJ

Reserves Sailors

sid=sid

bid=100 rating > 5

sname
Can’t be indexed NLJ here as it

stands. Not left-deep. For NLJ,

could materialize rating>5 result,

with additional i/o. Or push rating

condition back up. Then left-deep.

What are Transactions?

 So far, we looked at individual queries; in practice, a task

consists of a sequence of actions

 E.g., “Transfer $1000 from account A to account B”

 Subtract $1000 from account A

 Subtract transfer fee from account A

 Credit $1000 to account B

 A transaction is the DBMS’s view of a user program:

 Must be interpreted as “unit of work”: either entire transaction

executes, or no part of it executes/has any effect on DBMS

 Two special final actions: COMMIT or ABORT

15

ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in
consistent state

3. Isolation: each transaction is protected from effects of other
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will
persist

 Conversely, if a transaction aborts/is aborted, there are no effects

16

Modeling Transactions

 User programs may carry out many operations …

 Data-related computations

 Prompting user for input, handling web requests

 … but the DBMS is only concerned about what data is

read/written from/to the database

 A transaction is abstracted by a sequence of time-ordered

read and write actions

 e.g., R(X), R(Y), W(X), W(Y)

 R=read, W=write, data element in parentheses

 Each individual action is indivisible, or atomic

 SQL UPDATE = R(X) W(X)

17

 Consider two transactions (in a really bad DB) where A = 100

 T1 & T2 are concurrent, running same transaction program

 T1& T2 both read old value, 100, add 100, store 200

 One of the updates has been lost!

 Consistency requirement: after execution, A should reflect all
deposits (Money should not be created or destroyed)

 No guarantee that T1 will execute before T2 or vice-versa…

 … but the net effect must be equivalent to these two transactions
running one-after-the-other in some order

Concurrency: lost update anomaly

T1: A = A + 100
T2: A = A + 100

18

 Consider two transactions (in a really bad DB) where A = 100

 T1 & T2 are concurrent, running same transaction program

 T1& T2 both read old value, 100, add 100, store 200

 One of the updates has been lost!

 Using R/W notation, marking conflicts: same data item, different

transactions, at least one a write:

R1(A) R2(A)W2(A)C2W1(A)C1

 First arc says T1 T2, second says T2T1, so there is a cycle in

the dependency graph

 This execution is not allowed under 2PL

Concurrency: lost update anomaly

19

Strict Two-Phase Locking (Strict 2PL)

 Protocol steps
 Each transaction must obtain a S (shared) lock on object before

reading, and an X (exclusive) lock on object before writing.

 All locks held are released when the transaction completes
 (Non-strict) 2PL: Release locks anytime, but cannot acquire locks after

releasing any lock.

 Strict 2PL allows only serializable schedules.
 It simplifies transaction aborts

 (Non-strict) 2PL also allows only serializable schedules, but
involves more complex abort processing

 Strict 2PL prevents anomalies if the set of database items
never changes: here insert and delete are excluded as not R
or W. With insert/delete, need index locking.

20

R1(A) R2(A)W2(A)C2W1(A)C1

 First arc says T1 T2, second says T2T3, so there is a

cycle in the dependency graph

 This execution is not allowed under 2PL

 Run it under 2PL:

S1(A) R1(A) S2(A) R2(A) --shows sharing of lock

<X2(A) blocked> --so look for next non-T2 operation to do

<X1(A) blocked>-- DEADLOCK, abort T2 (say)

A2 <X1(A) unblocked>W1(A) C1

Concurrency: lost update anomaly

21

R1(A) R2(A)W2(A)C2W1(A)C1

 Run it under 2PL, but get X lock for R(A) W(A) sequence:

X1(A) R1(A)<X2(A)blocked> --so skip T2 ops…

W1(A)C1 <X2(A) unblocked> R2(A)W2(A)C2

Works better!

Concurrency: lost update anomaly

22

Aborting Transactions

 When Ti is aborted, all its actions have to be undone

 if Tj reads an object last written by Ti, Tj must be aborted as well!

 cascading aborts can be avoided by releasing locks only at commit

 If Ti writes an object, Tj can read this only after Ti commits

 In Strict 2PL, cascading aborts are prevented

 At the cost of decreased concurrency

 No free lunch!

 Increased parallelism leads to locking protocol complexity

23

Deadlock Detection

 Create a waits-for graph:

 Nodes are transactions

 Edge from Ti to Tj if Ti is waiting for Tj to release a lock

T1: S(A), R(A), S(B)

T2: X(B),W(B) X(C)

T3: S(C), R(C)

T4: X(B)

T1 T2

T4 T3

24

X(A)

Dirty Reads

 Example: Reading Uncommitted Data (Dirty Reads)

R1(A) W1 (A) R2(A) W2 (A) R2 (B) W2 (B) R1 (B) W1 (B)

Note: commits are not involved in locating conflicts

T1T2 T2T1

 Again, this schedule can’t happen under 2PL

25

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Index Locking

 Needed for full serializability in face of inserts and deletes

 Example: assume index on the rating field using
Alternative (2)

 Row locking is the industry standard now

 T1 should lock all the data entries with rating = 1

 If there are no records with rating = 1, T1 must lock the entries
adjacent to where data entry would be, if it existed!

 e.g., lock the last entry with rating = 0 and beginning of
rating=2

 If there is no suitable index, T1 must lock the table

Locking for B+ Trees (contd.)

 Searches

 Higher levels only direct searches for leaf pages

 Insertions

 Node on a path from root to modified leaf must be “locked” in

X mode only if a split can propagate up to it

 Similar point holds for deletions

 There are efficient locking protocols that keep the B-tree

healthy under concurrent access, and support 2PL on

rows, and provide index locking to avoid phantoms

Isolation Levels in Practice

 Databases default to RC, read-committed, so many apps

run that way, can have their read data changed, and

phantoms

 Web apps (JEE, anyway) have a hard time overriding RC,

so most are running at RC

 The 2PL locking scheme we studied was for RR,

repeatable read: transaction takes long term read and

write locks

 Long term = until commit of that transaction

Read Committed (RC) Isolation

 2PL can be modified for RC: take long-term write locks
but not long term read locks

 Reads are atomic as operations, but that’s it

 Lost updates can happen in RC: system takes 2PC locks
only for the write operations:

R1(A)R2(A)W2(B)C2W1(B)C1

R1(A)R2(A)X2(B)W2(B)C2X1(B)W1(B)C1 (RC isolation)

 Update statements are atomic, so that case of read-then-
write is safe even at RC

 Update T set A = A + 100 (safe at RC isolation)

 Remember to use update when possible!

Crash Recovery: Big Picture

Start from a checkpoint (found in
master record)

Three phases:

ANALYSIS: Find which
transactions committed or failed
since checkpoint

REDO all actions (repeat history)

UNDO effects of failed
transactions

Oldest log
rec. of Xact
active at crash

Smallest
recLSN in
dirty page
table after
Analysis

Last chkpt

CRASH

A R U

Logging

 Essential function for recovery

 Record REDO and UNDO information, for every update

 Example: T1 updates A from 10 to 20

 Undo: know how to change 20 back to 10 if find 20 in disk page and
know T1 aborted

 Redo: know how to change 10 to 20 if see 10 in the disk page and
know T1 committed.

 Updates include row inserts and deletes, but not emphasized
here

 Writes to log must be sequential, should be stored on a
separate (mirrored) disk

 Minimal information (summary of changes) written to log, since
writing the log can be a performance problem

Write-Ahead Logging (WAL)

 The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the

corresponding data page gets to disk

2. Must write all log records for transaction before commit

returns

 Property 1 guarantees Atomicity

 Property 2 guarantees Durability

 We focus on the ARIES algorithm

 Algorithms for Recovery and Isolation Exploiting Semantics

The Analysis Phase

 Reconstruct state at checkpoint.

 from end_checkpoint record

 Fill in Transaction table, replace status = aborted/running with

status U (needs undo)

 Fill in DPT (dirty page table)

 Scan log forward from checkpoint, tracing transactions

and dirty pages

 Finished: now all Transactions still marked U are “losers”,

DPT represents state at crash: which pages didn’t get

written to disk

The REDO Phase

 We repeat history to reconstruct state at crash:

 Reapply all updates (even of aborted transactions), redo CLRs.

 Redo Update, basic case:

 Read in page if not in buffer

 Apply change to part of page (often a row)

 Leave page in buffer, to be pushed out later (lazy again)

 Redo CLR:

 Do same action as original UNDO:

 Read in page if not in buffer, apply change, leave page in buffer

 But sometimes we don’t need to do the redo, check conditions
first…this is an optimization, skip for now.

The UNDO Phase, simple case, no rollbacks

in progress at crash

In this case, losers have no CLRs in the old log

ToUndo = set of lastLSNs for “loser” transactions

(ones active at crash)

Repeat:
 Choose largest LSN among ToUndo

 This LSN is an update. Undo the update, write a CLR, add
prevLSN to ToUndo

UntilToUndo is empty
 i.e. move backwards through update log records of all loser

transactions, doing UNDOs

 End up with a bunch of CLRs in log to document what was done,
so it doesn’t have to be all repeated if this recovery crashes.

Summary of Logging/Recovery

 Recovery Manager guarantees Atomicity & Durability.

 Use WAL to allow STEAL/NO-FORCE w/o sacrificing

correctness.

 LSNs identify log records; linked into backwards chains

per transaction (via prevLSN).

 pageLSN allows comparison of data page and log records.

Containers, e.g. Docker containers

Containers create a sandbox environment for a program to run

in, isolating it from other programs and even the filesystem of

the system it’s running in, and its network.

 It does use the OS kernel, originally only Linux.

 Needs to provide its own filesystem, since isolated from the

shared one.

 Needs to have its own network, since isolated from the shared

one.

 Usually a single process runs inside the container, but more are

allowed.

 Note that an ordinary process isolates memory from other

processes, but shares the filesystem, and network ports.

Docker Containers and Images

 Container: the executable object, like an executable file but
holding a whole filesystem inside ready for the program.

 Docker Image: stored software in a format ready for use in a
container. A container is built from one or more images. An
image is something like a .class file, a template for building
executables, not an executable itself.
 Pre-built images are available from the Docker hub and elsewhere

 You can build an image from your own software

 Once you have an image, you can “run” it, passing various arguments.
This will build and execute the container.

 Once installed on a host system, Docker provides the a docker
command, and a docker daemon (dockerd) to live on the host
system and carry out the docker commands.

 Docker commands: build, run, inspect, ps, kill, exec

 Dockerfiles for building small Java programs (hw6)

Data Warehousing

 Integrated data spanning long time

periods, often augmented with

summary information.

 Several gigabytes to terabytes

common, now petabytes too.

 Interactive response times expected

for complex queries; ad-hoc updates

uncommon.

 Read-mostly data

EXTERNAL DATA SOURCES

EXTRACT

TRANSFORM

LOAD

REFRESH

DATA

WAREHOUSE
Metadata

Repository

SUPPORTS

OLAP
DATA

MINING

OLAP: Multidimensional data model

 Example: sales data in fact table

 Dimensions: Product, Location, Time

 A measure is a numeric value like sales we want to understand
in terms of the dimensions. It’s in the fact table.

 Example measure: dollar sales value “sales”

 Example data point (one row of fact/cube table):
 Sales = 25 for pid=1, timeid=1, locid=1 is the sum of sales for that day, in that

location, for that product

 Pid=1: details in Product table

 Locid = 1: details in Location table

 Note aggregation here for OLAP: sum of sales is most detailed
data
 Data warehouse fact table may have individual sales info: much bigger.

 Need aggregation query to compute OLAP fact table from DW fact table.

OLAP Queries: cross-tabs

With relational DBs, we are used to tables with column

names across the top, rows of data.

With OLAP, a spreadsheet-like representation is common,

Called a cross-tabulation:

 One dimension horizontally

 Another vertically

 Can “pivot” the table

 Can “drill down”, “roll up”

 SQL queries for values

63 81 144

38 107 145

75 35 110

WI CA Total

1995

1996

1997

176 223 339Total

Topics FYI (not on final exam)

 Container tools other than docker itself

 Containerized mysql (too complex, not always a good

idea anyway). Study containerized Java program

examples.

 Materialized views

 NoSQL databases

 Data Lake idea (unstructured data, Hadoop)

 Big Data tools, like Apache Spark

