
CS634

Architecture of Database Systems

Spring 2018

Elizabeth (Betty) O’Neil

University of Massachusetts at Boston

People & Contact Information

 Instructor: Prof. Betty O’Neil

 Email: eoneil AT cs.umb.edu (preferred contact)

 Web: http://www.cs.umb.edu/~eoneil

 Office: Science Building, 3rd Floor, Room 169 (S-3-169)

 Grader (TA): TBD

2

Course Info

 Lecture Hours

 MW 5:30-6:45 pm

 McCormack M03-0204

 Office Hours

 MW 3:45-5:15 pm in S/3/169

 By appointment (send email or see me after class)

 Class URL

 http://www.cs.umb.edu/cs634

3

Textbook & Recommended Readings

 Textbook

 Database Management Systems, 3rd Edition

by Ramakrishnan and Gehrke

 Chapters 8-18, 20,25

 Other resources will be posted on the class home page

4

Prerequisites

 Database Management Systems
 CS430/630

 Data Structures and Algorithms, Programming in Java
 CS310, CS210

 Programming in C
 CS240

 Familiarity with UNIX/Linux shell commands
 Students have accounts on Linux system pe07.cs.umb.edu, as well as

users.cs.umb.edu, with access to an Oracle 12c server running on a
Linux machine (dbs3.cs.umb.edu), and a mysql server running on
Linux (pe07.cs.umb.edu)

5

Grading: simple point system

 Midterm (100 points) – open book

 Final exam (150 points) – open book

 Open book does NOT include electronic devices!

 Need a print book or printouts of parts of .pdf.

 5-6 homework assignments

 10-25 points each

 Assignments are individual – submit your own work only!

(unless specifically marked as group assignment)

 No plagiarism please – see student code of conduct

6

Website

 Class URL

http://www.cs.umb.edu/cs634/ Find slides, handouts, useful links,
homework assignments, etc.

 Class email list: make sure you have a .forward in your
cs.umb.edu home directory with your preferred email
address—I’ll check this on Friday.

 Make sure you create a Unix course account for cs634. It will
give you access to our Linux system pe07. Also membership in
the class email list.

7

http://www.cs.umb.edu/cs634/

University Policies

 Student Conduct: Students are required to adhere to the University

Policy on Academic Standards and Cheating, to the University Statement

on Plagiarism and the Documentation of Written Work, and to the Code

of Student Conduct as delineated in the University Catalog and Student

Handbook.The Code is available online at:

http://www.umb.edu/life_on_campus/policies/code/

 Accommodations: Section 504 of the Americans with Disabilities Act

of 1990 offers guidelines for curriculum modifications and adaptations

for students with documented disabilities. If applicable, students may

obtain adaptation recommendations from the Ross Center for Disability

Services, CC-UL Room 211, (617-287-7430). The student must present

these recommendations and discuss them with each professor within a

reasonable period, preferably by the end of Drop/Add period.

8

http://www.umb.edu/life_on_campus/policies/code/
callto:+1617-287-7430

What did we learn in 430/630?

 Relational Data Model

 Data represented as table with row and columns, called a relation;

 Each relation has a schema, which describes the table structure

 Querying relational DBMS

 SQL language: single table queries, join queries, grouping and

aggregates, nested queries, division

 Accessing relational DBMS from applications: JDBC, PLSQL

 Design theory

 Basics of Database Security (GRANT command, etc.)

9

Levels of Abstraction

Data

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Database Management Systems 3rd ed, Ramakrishnan and Gehrke

Describes files and

indexes used, what

type of indexes, how

data are organized

on disk, etc

Defines logical

data structure
Views define how

users see data

10

CS634

CS630

What will we learn in 634?

 How data are stored inside DBMS

 Internal data structure types and their trade-offs

 How to provide access to data efficiently

 Indexing

 How to execute queries efficiently

 Query execution plans and optimization

 Tuning the database as DBA

 Transaction Management

 Supporting concurrent access to data

 Persistent storage and recovery from failure

 Data Warehousing

 Intro to Big Data

11

Architecture of a DBMS

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

12

Lock Manager
Recovery

Manager

Data Storage and Indexing

 Storage

 Disk Space Management

 RAID, SSD

 Buffer Management and its tuning

 Page and record formats

 Indexing

 General Index Structure

 Hierarchical (tree-based) indexing

 Hash-based indexing

 Index operations

 Cost analysis and trade-offs

13

Query Evaluation and Optimization

 Operator Evaluation

 Algorithms for relational operations

 Selection, projection, join, etc

 Query evaluation plans

 Query Optimization

 Multi-operator queries: pipelined evaluation

 Alternative plans

 Using indexes

 Estimating plan costs

14

Transaction Management

 Transaction = unit of work (sequence of operations)

 Concurrency control: multiple transactions running

simultaneously (updates are the issue)

 Failure Recovery: what if system crashes during execution?

 ACID properties

 A = Atomicity

 C = Consistency

 I = Isolation

 D = Durability

 Synchronization protocols – serializable schedule

15

Data Warehousing

 Integrated data spanning long time

periods, often augmented with

summary information.

 Several gigabytes to terabytes

common, now petabytes too.

 Interactive response times expected

for complex queries; ad-hoc updates

uncommon.

 Read-mostly data

EXTERNAL DATA SOURCES

EXTRACT

TRANSFORM

LOAD

REFRESH

DATA

WAREHOUSE
Metadata

Repository

SUPPORTS

OLAP
DATA

MINING

On to Big Data

 OLTP: Online Transaction Processing (DBMSs)

 OLAP: Online Analytical Processing (Data Warehousing)

 RTAP: Real-Time Analytics Processing (Big Data Architecture & technology)

17

Review: Foreign Keys

18

Defined in Sec. 3.2.2 without mentioning nulls

First example: nice not-null foreign key column (because

it’s part of the primary key):

create table enrolled(

studid char(20),

cid char(20),

grade char(10),

primary key(studid,cid),

foreign key(studid) references Students

);

This FK ensures that there’s a real student record for the

studid listed in this row. The students table is assumed to

have a primary key of type compatible with studid’s.

Review: Foreign Keys, etc.

19

create table enrolled(

studid char(20),

cid char(20),

grade char(10),

primary key(studid,cid), -- so both these cols are non-null

foreign key(studid) references Students

);

• Note the “Students” table name. Table names, column names, etc. are

caseless in standard SQL. So this can also be written “students”.

• primary key(studid,cid): This ensures that both studid and cid are non-

null, as pointed out on pg. 77, top. So we don’t have to write “cid

char(20) not null”, but it doesn’t hurt to do so.

• “grade char(10)”: this column may have null values, since there is no “not

null” column constraint on it.

Review: Foreign Keys, etc.

20

create table enrolled(

studid char(20),

cid char(20),

grade char(10),

primary key(studid,cid), -- so both these cols are non-null

foreign key(studid) references Students

);

• We would usually expect a foreign key constraint on cid as well.

• MySQL: use “references students(sid)”

• More on this next time: read Sec. 3.2

Important SQL Standards

21

SQL-92: third and most important standard

Early enough to affect Oracle, DB2, other important

commercial databases, so the real common ground.

SQL-2003 (also sometimes called SQL-99, a stepping-stone

to it), revised 2008

SQL 2003 Data Types, from
http://www.w3resource.com/sql/data-type.php, with notes in color

22

CHARACTER(n) or CHAR(n) Character string, fixed length n. A string of

text in an implementer-defined format. The

size argument is a single nonnegative

integer that refers to the maximum length

of the string. Values for this type must

enclosed in single quotes. Character sets:

another topic.

CHARACTER VARYING(n) or

VARCHAR(n)

Variable length character string, maximum

length n.

BINARY(n) Fixed length binary string, maximum length

n. Not in SQL-92, but BIT(n) there.

BOOLEAN Stores truth values - either TRUE or FALSE.

Not in SQL-92

BINARY VARYING(n) or

VARBINARY(n)

Variable length binary string, maximum

length n. BIT VARYING in SQL-92.

http://www.w3resource.com/sql/data-type.php

SQL 2003 Data Types

23

INTEGER(p) Integer numerical, precision p. Not in SQL-92 with (p).

MySQL: p means display size, not precision

SMALLINT Integer numerical precision 5. SQL-92: precision is

implementation dependent.

INTEGER Integer numerical, precision 10. It is a number without decimal

point with no digits to the right of the decimal point, that is,

with a scale of 0. SQL-92: precision is implementation

dependent.

BIGINT Integer numerical, precision 19.

Not in SQL-92.

SQL 2003 Data Types

24

DECIMAL(p, s) Exact numerical, precision p, scale s. A decimal number, that is

number that can have a decimal point in it. The size argument

has two parts : precision and scale. The scale can not exceed

the precision. Precision comes first, and a comma must

separate from the scale argument. How many digits the number

is to have - a precision indicates that and maximum number of

digits to the right of decimal point have, that indicates the scale.

NUMERIC(p, s) Exact numerical,

precision p, scale s.

(Same as DECIMAL).

SQL 2003 Data Types

25

FLOAT(p) Approximate numerical, mantissa precision p. A

floating number in base 10 exponential notation.

The size argument for this type consists of a

single number specifying the minimum precision.

REAL Approximate numerical

mantissa precision 7. Better to use FLOAT.

FLOAT Approximate numerical

mantissa precision 16. Usually IEEE Standard

floating point, but not guaranteed by the SQL

standard. Oracle uses NUMBER for FLOAT, use

BINARY_DOUBLE for IEEE format, like Java

double.

DOUBLE PRECISION Approximate numerical

mantissa precision 16. Same as FLOAT.

SQL 2003 Data Types

26

DATE

TIME

TIMESTAMP

Composed of a number of integer fields,

representing an absolute point in time,

depending on sub-type.

INTERVAL Composed of a number of integer fields,

representing a period of time, depending on the

type of interval.

COLLECTION

(ARRAY, MULTISET)

Not in SQL-92

ARRAY(offered in SQL99) is a set-length and

ordered collection of elements, MULTISET

(added in SQL2003) is a variable-length and

unordered collection of elements. Both the

elements must be of a predefined datatype.

XML Not in SQL-92 Stores XML data. It can be used wherever a

SQL datatype is allowed, such as a column of a

table.

