
Hash Indexes: Chap. 11

CS634
Lecture 6

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

HW 2 Bench Table
 Table of 1M rows, Columns of different “cardinalities”

CREATE TABLE BENCH (

KSEQ integer primary key,

K500K integer not null, K250K integer not null,     

K100K integer not null, K40K integer not null,        

K10K integer not null,  K1K integer not null,       

K100 integer not null,  K25 integer not null,

K10 integer not null,  K5 integer not null,

K4 integer not null,   K2 integer not null,

S1 char(8) not null,   S2 char(20) not null,

S3 char(20) not null,  S4 char(20) not null,

S5 char(20) not null,  S6 char(20) not null,

S7 char(20) not null,  S8 char(20) not null)

tablespace setq storage(initial 1 M next 1 M );

 Column K500K has 500K different values 1, 2, …, 500,000

 Column K2 has 2 different values 1,2  (cardinality 2)

Table Bench is in tablespace setq
create tablespace setq

datafile

'/home/oracle/app/oracle/oradata/dbs3/eoneil_setq.dbf' 

size 1 G

default storage ( initial 1 M next 1 M);

 Shows how a disk file becomes part of the database. Oracle 
makes the file based on this spec.

 MySQL v. 5.7 is the first version to allow this simple way of 
adding a file to an Innodb database, 

 CREATE TABLESPACE tablespace_name ADD DATAFILE 
'file_name‘

 No size spec, so presumably auto-extend. 

Loading table bench

 First a  C program creates a datafile bench.dat:
% head -3 bench.dat

1 16808 225250 50074 23659 8931 273 45 4 4 5 1 2 12345678 

12345678900987654321 12345678900987654321 

12345678900987654321 12345678900987654321 

12345678900987654321 12345678900987654321 

12345678900987654321

2 484493 243043 7988 2504 2328 730 41 13 4 5 2 2 12345678 

12345678900987654321 12345678900987654321 

12345678900987654321 12345678900987654321 

12345678900987654321 12345678900987654321 

12345678900987654321

3 129561 70934 93100 279 1817 336 98 2 3 3 3 2 12345678 

12345678900987654321 12345678900987654321 

12345678900987654321 12345678900987654321 

12345678900987654321 12345678900987654321 

12345678900987654321

Then a bulk load
topcat$ more bench.ctl

load data

replace

into table bench

fields terminated by " "

(KSEQ, K500K, K250K, K100K, K40K, K10K, K1K, K100, K25, 

K10, K5, K4, K2, S1, S2, S3, S4, S5, S6, S7, S8)

 Note this builds the PK index, not clustered.

 Would be slower if the data file was on networked disk.

 The load of bench took about one minute.

 That’s 210 MB data read in about 60 s, or about 3 MB/s read rate.

 Load of bench250: 53 GB in 160 min, about 5 MB/s

 Vs. only 6 min to create input file with C program.

Then add secondary indexes on some columns

CREATE INDEX k500kin ON bench (k500k)

storage (initial 1 M next 1 M) pctfree 5 tablespace setq;

COMMIT WORK;

CREATE  INDEX k100kin on bench (k100k)

storage (initial 1 M next 1 M) pctfree 5 tablespace setq

COMMIT WORK;

CREATE INDEX k10kin on bench (k10k)

storage (initial 1 M next 1 M) pctfree 5 tablespace setq;

COMMIT WORK;

CREATE INDEX k100in on bench (k100)

storage (initial 1 M next 1 M) pctfree 5 tablespace setq;

COMMIT WORK;

CREATE INDEX k10in on bench (k10)

storage (initial 1 M next 1 M) pctfree 5 tablespace setq;

COMMIT WORK;

CREATE INDEX k4in on bench (k4)

storage (initial 1 M next 1 M) pctfree 5 tablespace setq;

COMMIT WORK;

We could make a tablespace for these indexes and get better performance for some 
queries, if we were using two disks, say. But we are using RAID over many disks.



Final Steps for Bench Table

 Analyze the table to get stats for the query processor

SQL>exec dbms_stats.gather_table_stats(

‘SETQ_DB’, ‘BENCH’,cascade=>true);

 Here cascade means analyze its indexes too.

 Make it publicly readable:

grant select on bench to public;

Try it out from another (non-priv) account
dbs2(20)% sqlplus cs634test/…

SQL> select count(*) from setq_db.bench;

COUNT(*)

----------

1000000

SQL> select tablespace_name from all_tables

where table_name = 'BENCH';

TABLESPACE_NAME

------------------------------

SETQ

SQL> select index_name,index_type, uniqueness from all_indexes where 
table_name='BENCH';

INDEX_NAME                     INDEX_TYPE                  UNIQUENES

------------------------------ --------------------------- ---------

SYS_C00149010                  NORMAL                      UNIQUE

K500KIN                        NORMAL                      NONUNIQUE

K100KIN                        NORMAL                      NONUNIQUE 

…

Overview

 Hash-based indexes are best for equality selections

 Cannot support range searches, except by generating all values

 Static and dynamic hashing techniques exist

 Hash indexes not as widespread as B+-Trees

 Some DBMS do not provide hash indexes

 But hashing still useful in query optimizers (DB Internals)

 E.g., in case of equality joins

 As for tree indexes, 3 alternatives for data entries k*

 Choice orthogonal to the indexing technique

Hashing in Memory and on Disk

• The hash table may be located in memory, supporting 
fast lookup to records on disk, or even on disk, supporting 
fast access to further disk.  

• In fact, a disk-resident hash table that is in frequent use 
ends up being in memory because of the memory 
"caching" of disk pages in the file system.

keys  hash table  Data records Example

memory memory         memory     typical HashMap apps 

memory  memory         disk            use HashMap to hold disk 
record locations as values

memory disk                disk hashed files, some 
database tables

Static Hashing

 Number of buckets N fixed, each with primary, overflow pages

 primary pages are allocated sequentially

 overflow pages may be needed when file grows

 Buckets contain data entries

 Hash value: h(k) mod N = bucket for data entry with key k

h(key) mod N

h
key

Primary bucket pages Overflow pages

1

0

N-1

Static Hashing

 Hash function is applied on search key field

 Must distribute values over range 0 ... N-1.

 h(key) = (a * key + b) is a typical choice (for numerical keys)

 a and b are constants, chosen to “tune” the hashing, and prime

 Example: h(key) = 37*key + 101

 Hash function for string keys?  A tricky subject, easy to go 

wrong

 See Wikipedia article https://en.wikipedia.org/wiki/Hash_function

 Algorithm used by Perl: 

https://en.wikipedia.org/wiki/Jenkins_hash_function

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Jenkins_hash_function


Data entries can be full rows (Alt (1))

 Primary pages are sequential on disk, so full table scan is fast if not 
too many overflow pages, or overflow pages are also sequential 

 Is a clustered index (data records in hash key order), but the 
clustering is not useful.

h(key) mod N

h
key

Primary bucket pages Overflow pages

1

0

N-1

Data entries can be (key, rid(s)) (Alt (2,3))

Requires data sorted in hash-value order, but

NOT USEFUL, so only theoretical

h(key) mod N

h
key

1

0

N-1

pages of Data entries (from above)

(Index File)

(Data file)

CLUSTERED UNCLUSTERED

Static Hashing

 Works well if we know how many keys there can be

 Then we can size the primary page sequence properly: keep it 
under about half full

 Can have “collisions”: two keys with same hash value

 But when file grows considerably there are problems

 Long overflow chains develop and degrade performance  

 Example: loader took over an hour to load a big program

 Found it was hashing using 1000-spot hash table for global 
symbols!  One line edit solved the problem.

 General Solution: Dynamic Hashing, 2 contenders described:

 Extendible Hashing

 Linear Hashing

Extendible Hashing

 Main Idea: when primary page becomes full, double the 

number of buckets

 But reading and writing all pages is expensive

 Use directory of pointers to buckets

 Double the directory size, and only split the bucket that just 

overflowed!

 Directory much smaller than file, so doubling it is cheap

 There are no overflow pages (unless the same key appears a lot 

of times, i.e., very skewed distribution – many duplicates)

Extendible Hashing Example

 Directory is array of size 4

 Directory entry corresponds to last 

two bits of hash value

 If h(k) = 5 = binary 101,  it is in 

bucket pointed to by 01

 Insertion into non-full buckets is 

trivial

 Insertion into full buckets requires 

split and directory doubling

 E.g., insert h(k)=20

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

14*

Insert h(k)=20 (Causes Doubling)

 Insert h(k)=20 = 10100

 But bucket for 00 (Bucket A) is full.

 Need to split Bucket A

 Look at its hash values: all are …00, i.e. 

have last two binary digits = 00.

 But now we’ll use last 3 binary digits:

4 =    100  new bucket

12 = 1100  new bucket

32 = 10000 gets left in old bucket

16 =   1000 gets left in old bucket

New value:

20 = 10100   new bucket

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

14*



Insert h(k)=20 (Causes Doubling)

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

Use last 3 bits 
in split bucket!

Global vs Local Depth

 Global depth of directory:

 Max # of  bits needed to tell which bucket an entry belongs to

 Local depth of a bucket: 

 # of bits used to determine if an entry belongs to this bucket

 When does bucket split cause directory doubling?

 Before insert, local depth of bucket = global depth

 Insert causes local depth to become > global depth

 Directory is doubled by copying it over 

 Use of least significant bits enables efficient doubling via copying of 
directory

 Delete:  if bucket becomes empty, merge with `split image’

 If each directory element points to same bucket as its split image, 
can halve directory 

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
It allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant

Extendible Hashing Properties

 If directory fits in memory, equality search answered with 

one I/O; otherwise with two I/Os

 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records

 (That’s 100MB/(100 bytes/rec) = 1M recs)

 25,000 directory elements will fit in memory

 (That’s assuming a bucket is one page, 4KB = 4096 bytes, so can hold 

4000 bytes/(100 bytes/rec)= 40 recs, plus 96 bytes of header, so 

1Mrecs/(40 recs/bucket) = 25,000 buckets, so 25,000 directory elements)

 Multiple entries with same hash value cause problems!

 These are called collisions

 Cause possibly long overflow chains

Linear Hashing

 Dynamic hashing scheme

 Handles the problem of long overflow chains

 But does not require a directory!

 Deals well with collisions!

Linear Hashing

 Main Idea:  use a family of hash functions h0, h1, h2, ...

 hi(key) = h(key) mod(2iN)

 N = initial number of buckets

 If N = 2d0, for some d0, hi consists of applying h and looking at the 
last di bits, where di = d0 + i

 hi+1 doubles the range of hi (similar to directory doubling)

 Example:

 N=4, conveniently a power of 2

 hi(key) = h(key)mod(2iN)=h(key), last 2+i bits of key

 h0(key) = last 2 bits of key

 h1(key) = last 3 bits of key

 …



Linear Hashing: Rounds

 During round 0, use h0 and h1

 During round 1, use h1 and h2

 …

 Start a round when some bucket overflows

 (or possibly other criteria, but we consider only this)

 Let the overflow entry itself be held in an overflow chain 

 During a round, split buckets, in order from the first

 Do one bucket-split per overflow, to spread out overhead

 So some buckets are split, others not yet, during round.

 Need to track division point: Next = bucket to split next

Overview of Linear Hashing

Levelh 

Buckets that existed at the

beginning of this round: 

this is the range of

Next

Bucket to be split Levelh (search key value)

(search key value) 

Buckets split in this round:

If 

is in this range, must use

h Level+1

`split image' bucket.

to decide if entry is in 

`split image' buckets:

Note this is a “file”, i.e., contiguous in memory or in a real file.

Linear Hashing Properties

 Buckets are split round-robin

 Splitting proceeds in `rounds’

 Round ends when all NR initial buckets are split (for round R)  

 Buckets 0 to Next-1 have been split;  Next to NR yet to be split.

 Current round number referred to as Level

 Search for data entry r :

 If hLevel(r) in range `Next to NR’ , search bucket hLevel(r)

 Otherwise, apply hLevel+1(r) to find bucket

Linear Hashing Properties

 Insert:

 Find bucket by applying hLevel or hLevel+1 (based on Next value)

 If bucket to insert into is full:

 Add overflow page and insert data entry.

 Split Next bucket and increment Next

 Can choose other criterion to trigger split

 E.g., occupancy threshold

 Split round-robin prevents long overflow chains

Example of Linear Hashing

 On split, hLevel+1 is used to re-distribute entries.

0
hh

1

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents

of the linear hashed

file)

Next=0

PRIMARY

PAGES

Data entry r
with h(r)=5

Primary 
bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

0
hh

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY

PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW

PAGES

43*

00100

After inserting 43*

End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0

PRIMARY
PAGES

OVERFLOW

PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44* 36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1

111

11

PRIMARY

PAGES
OVERFLOW

PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Insert h(x) = 50 = 11010, overflows

010 bucket, 11 bucket splits



Advantages of Linear Hashing

 Linear Hashing avoids directory by:

 splitting buckets round-robin

 using overflow pages

 in a way, it is the same as having directory doubling gradually

 Primary bucket pages are created in order

 Easy in a disk file, though may not be really contiguous

 But hard to allocate huge areas of memory

Summary

 Hash-based indexes: best for equality searches, (almost) 

cannot support range searches.

 Static Hashing can lead to long overflow chains.

 Extendible Hashing avoids overflow pages by splitting a full 

bucket when a new data entry is to be added to it.  (Duplicates 

may require overflow pages.)

 Directory to keep track of buckets, doubles periodically.

 Can get large with skewed data; additional I/O if this does not fit in 

main memory.

Summary (Contd.)

 Linear Hashing avoids directory by splitting buckets round-

robin, and using overflow pages. 

 Overflow pages not likely to be long.

 Duplicates handled easily.

 Space utilization could be lower than Extendible Hashing, since splits 

not concentrated on `dense’ data areas in the early part of a round.

 For hash-based indexes, a skewed data distribution is one in 

which the hash values of data entries are not uniformly 

distributed

 Need a good hash function!

Indexes in Standards

 SQL92/99/03 does not standardize use of indexes

 (BNF for SQL2003)

 But all DBMS providers support it

 X/OPEN actually standardized CREATE INDEX clause

CREATE [UNIQUE] INDEX indexname ON tablename

(colname [ASC | DESC] [,colname [ASC | DESC] ,. . .]);

 ASC|DESC are just there for compatibility, have no effect in 

any DB I know of.

 Index has as key the concatenation of column names

 In the order specified

Indexes in Oracle

 Oracle supports mainly B+-Tree Indexes

 These are the default, so just use create index…

 No way to ask for clustered directly

 Clustering on PK is available via index-organized tables (IOTs)

 In this case, the RID is different, affecting secondary index performance

 Also “table cluster” for co-locating data of tables often joined

 Hashing: via “hash cluster”

 Also a form of hash partitioning supported

 Also supports bitmap indexes

 Hash cluster example

Example Oracle Hash Cluster

CREATE CLUSTER trial_cluster (trialno DECIMAL(5,0))

SIZE 1000 HASH IS trialno HASHKEYS 100000; 

CREATE TABLE trial ( trialno DECIMAL(5,0) PRIMARY KEY, ...) 

CLUSTER trial_cluster (trialno);

 SIZE should estimate the max storage in bytes of the rows 

needed for one hash key

 Here HASHKEYS <value> specifies a limit on the number of 

unique keys in use, for hash table sizing. Oracle rounds up to a 

prime, here 100003. This is static hashing.

http://savage.net.au/SQL/sql-2003-2.bnf.html


Oracle Hash Index, continued

 For static hashing in general: rule of thumb—

 Estimate the max possible number of keys and double it. This 

way, about half the hash cells are in use at most.

 The hash cluster is a good choice if queries usually 

specify an exact trialno value.

 Oracle will also create a B-tree index on trialno

because it is the PK.  But it will use the hash index for 

equality searches.

MySQL Indexes, for InnoDB Engine

 CREATE  [UNIQUE] INDEX index_name [index_type] 

ON tbl_name (index_col_name,...)

 index_col_name: col_name [(length)] [ASC | DESC] 

 index_type: USING {BTREE | HASH}

 Syntax allows for hash index, but not supported by 

InnoDB.

 For InnoDB, index on primary key is clustered.

Clustered index on PK: choose your PK 

wisely

 Available in Oracle and MySQL, as only kind of clustered 

B-tree index.

 Common PKs are ids, arbitrary, not commonly used in 

range queries, so not getting the good from the clustered 

B-tree.

 However, a PK is what we say it is for a table, and doesn’t 

need to be minimalistic, just a unique identifier.

 So (zipcode, custid) works as a PK and clusters the data 

by zipcode. Custid is a “uniquifier” here. 

 Then useful range queries on zipcode run fast.

 Typically, data is inserted first, then index is created

 Exception: alternative (1) indexes (of course!)

 Then best to sort first, then load

 How to sort?  Use database: load, sort, dump, load for real

 Index bulk-loading is a good idea – recall it is much faster

 Delete an index

DROP INDEX indexname;

 Guidelines:

 Create index if you frequently retrieve less than 15% of the table

 To improve join performance, index columns used for joins

 Small tables do not require indexes, except ones for PKs.

Indexes in Practice

Compare B-Tree and Hash Indexes

 Dynamic Hash tables have variable insert times

 Worst-case access time & best average access time

 But only useful for equality key lookups

 Note there are bitmap indexes too


