
Query Evaluation Overview, cont.

Lecture 9

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Architecture of a DBMS

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

2

The two major parts of the DB engine

 QP = query processor, top two boxes on last slide

 Storage manager = rest of boxes

 See “index and record requests” flowing between

 Can be more specific, see list, pg. 283:

 Actions on “files”: file scan, search with equality selection,
search with range selection, insert record, delete record

 Files listed: heap files, sorted files, clustered files, heap file with
unclustered tree index, heap file with unclustered hash index.
An index on its own is a sorted file.

 A file is something that the storage engine can process via an
ISAM-like API

 A table can be accessed as a file: pick an index for it (or not)

Storage Engine API

 If a QP and storage engine hue to an API, then different

storage engines can be “plugged in” to the database

 Example: MS SQL Server can access Excel files via the

OLE-DB API. Also via ODBC.

 That is, there is an Excel OLE-DB “provider” (you don’t need

the whole Excel GUI).

 Example: MySQL has various storage engines—MyISAM

and Innodb, etc.

 New one (Nov ‘12): ClouSE uses Amazon S3 cloud storage.

MySQL Storage Engine API

Top-level API (subset) from internals manual

Note handoff to TABLE object for data actions:

int (*commit)(THD *thd, bool all);

int (*rollback)(THD *thd, bool all);

int (*prepare)(THD *thd, bool all);

int (*recover)(XID *xid_list, uint len);

handler *(*create)(TABLE *table); next slide

void (*drop_database)(char* path);

bool (*flush_logs)();

MySQL Storage Engine API: TABLE API
22.18.1 bas_ext

22.18.2 close

22.18.3 create

22.18.4 delete_row

22.18.5 delete_table

22.18.6 external_lock

22.18.7 extra

22.18.8 index_end

22.18.9 index_first

22.18.10 index_init

22.18.11 index_last

22.18.12 index_next

22.18.13 index_prev

22.18.14 index_read

22.18.15 index_read_idx

22.18.16 index_read_last

22.18.17 info

22.18.18 open

22.18.19 position

22.18.20 records_in_range

22.18.21 rnd_init

22.18.22 rnd_next

22.18.23 rnd_pos

22.18.24 start_stmt

22.18.25 store_lock

22.18.26 update_row

22.18.27 write_row

Index

scan

Table

scan

Insert rowSet current index: only one allowed for

the index scan

Set current index

https://dev.mysql.com/doc/internals/en/index.html
https://dev.mysql.com/doc/internals/en/bas-ext.html
https://dev.mysql.com/doc/internals/en/close.html
https://dev.mysql.com/doc/internals/en/create.html
https://dev.mysql.com/doc/internals/en/delete-row.html
https://dev.mysql.com/doc/internals/en/delete-table.html
https://dev.mysql.com/doc/internals/en/external-lock.html
https://dev.mysql.com/doc/internals/en/extra.html
https://dev.mysql.com/doc/internals/en/index-end.html
https://dev.mysql.com/doc/internals/en/index-first.html
https://dev.mysql.com/doc/internals/en/index-init.html
https://dev.mysql.com/doc/internals/en/index-last.html
https://dev.mysql.com/doc/internals/en/index-next.html
https://dev.mysql.com/doc/internals/en/index-prev.html
https://dev.mysql.com/doc/internals/en/index-read.html
https://dev.mysql.com/doc/internals/en/index-read-idx.html
https://dev.mysql.com/doc/internals/en/index-read-last.html
https://dev.mysql.com/doc/internals/en/info.html
https://dev.mysql.com/doc/internals/en/open.html
https://dev.mysql.com/doc/internals/en/position.html
https://dev.mysql.com/doc/internals/en/records-in-range.html
https://dev.mysql.com/doc/internals/en/rnd-init.html
https://dev.mysql.com/doc/internals/en/rnd-next.html
https://dev.mysql.com/doc/internals/en/rnd-pos.html
https://dev.mysql.com/doc/internals/en/start-stmt.html
https://dev.mysql.com/doc/internals/en/store-lock.html
https://dev.mysql.com/doc/internals/en/update-row.html
https://dev.mysql.com/doc/internals/en/write-row.html

Access Paths

 An access path is a method of retrieving tuples:

 File scan (AKA table scan if on a table)

 Index scan using an index that matches a condition

 As just seen in mysql, only one index is involved in an index scan.

 A tree index matches (a conjunction of) terms that involve every

attribute in a prefix of the search key

 E.g., tree index on <a, b, c> matches the selection a=5 AND b=3,

and a=5 AND b>6, but not b=3

 A hash index matches (a conjunction of) terms attribute = value

for every attribute in the search key of the index

 E.g., hash index on <a, b, c> matches a=5 AND b=3 AND c=5

 but it does not match b=3, or a=5 AND b=3

Example of matching indexes
Pg. 399: fix error Sailors Reserves on line 8

Reserves (sid: integer, bid: integer, day: dates, rname: string) 
rname column added here

with indexes:

 Index1: Hash index on (rname, bid, sid)
 Matches: rname=‘Joe’ and bid = 5 and sid=3

 Doesn’t match: rname=‘Joe’ and bid = 5

 Index2: Tree index on (rname, bid, sid)
 Matches: rname=‘Joe’ and bid = 5 and sid=3

 Matches: rname=‘Joe’ and bid = 5, also rname = ‘Joe’

 Doesn’t match: bid = 5

 Index3: Tree index on (rname)

 Index4: Hash index on (rname)
 These two match any conjunct with rname=‘Joe’ in it

Executing Selections

 Find the most selective access path, retrieve tuples using it

 Then, apply any remaining terms that don’t match the index

 Most selective access path: index or file scan estimated to require the
fewest page I/Os

 Consider day<8/9/94 AND bid=5 AND sid=3

 If we have B+ tree index on day, can use that access path

 Then, bid=5 and sid=3 must be checked for each retrieved tuple

 day condition is primary conjunct (matches index in use)

 Alternatively, use hash index on <bid, sid> for the index scan

 Then, day<8/9/94 must then be checked

 Need to estimate I/Os to decide between these

Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 4KB pages

 So 100K*40 = 4MB data, 4MB/4KB = 1000 pages

 Assume 4000 bytes/pg, so100 tuples per page

 Sailors:

 50 bytes long tuple, 40K tuples, 4KB pages

 So 80 tuples per page, 500 pages

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Using an Index for Selections

 Cost influenced by:

 Number of qualifying tuples

 Whether the index is clustered or not

 Ex:

 Assuming uniform distribution of names, 2/26 ~10% of tuples
qualify, that is 10000 tuples (pg. 401)

 With a clustered index, cost is little more 100 I/Os:

 10000*40 = 400KB data, in 100 data pages, plus a few index pgs

 If not clustered, up to10K I/Os!

 About 10000 data pages accessed, each with own I/O (unless big enough
buffer pool)

 Better to do a table scan: 1000 pages, so 1000 I/Os.

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Executing Projections

 Expensive part is removing duplicates

 DBMS don’t remove duplicates unless DISTINCT is specified

 Sorting Approach

 Sort on <sid, bid> (or <bid, sid>) and remove duplicates

 Avoidable if an index with R.sid and R.bid in the search key exists

 Hashing Approach

 Hash on <sid, bid> to create partitions (buckets)

 Load partitions into memory one at a time, build in-memory hash

structure, and eliminate duplicates

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Executing Joins: Index Nested Loops

 Cost = (M*pR) * (cost of finding matching inner-table tuples)

 M = number of pages of R, pR = number of R tuples per page

 If relation has index on join attribute, make it inner relation

 For each outer tuple, cost of probing inner index is 1.2 for hash
index, 2-4 for B+, plus cost to retrieve matching S tuples

 Clustered index typically single I/O (Alt 2) or no more I/O (Alt 1)
(unless many matching S tuples)

 Unclustered index 1 I/O per matching S tuple

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

From class 5/Chap. 8: Clustered Index

 To build clustered (tree) index, first sort the heap file, leaving some free space on each
page for future inserts

 Overflow pages may be needed for inserts

 Hence order of data records is close to the sort order

 This is an Alternative 2 clustered index. For Alternative 1, the rows are in the data
entries, so the original index lookup (tree or hash) finds the whole row.

 Oracle index-organized tables and mysql primary key indexes are Alt 1 clustered.

14

Data entries

(Index File)

(Data file)

Data entries

CLUSTERED UNCLUSTERED

Duplicate keys in indexes

 B trees: see Sec. 10.7 Duplicates: two ways to go—

 Overflow pages, but not “typical”

 Just sequential entries with the same key (we’ll assume this)

 Extendible Hashing: uses overflow pages (pg. 379)

 Linear Hashing: uses multiple entries in the main pages.

 May involve “extra” overflow pages, since splitting doesn’t help

with a long sequence of same-key entries.

 Shouldn’t use a hash index on a low-cardinality column. B-

tree is OK (esp. Alt. 3). (Bitmap index is best.)

 Cost of access for all dups of one key: calculate number

of pages of duplicate index entries

Example of Index Nested Loops (1/2)

Example: Reserves JOIN Sailors (natural join on sid)

Case 1: Hash-index (Alternative 2) on sid of Sailors

 Choose Sailors as inner relation

 Scan Reserves: 100K tuples, 1000 page I/Os

 For each Reserves tuple

 1.2 I/Os to get data entry in index (see pg. 402, 412)

 1 I/O to get (the exactly one) matching Sailors tuple (primary key)

 Total: 221,000 I/Os

 unless Sailors, 500 pages, fits in buffer pool along with some/all of
Reserves, 1000 pages, then only 1500 I/Os

 Dbs3: 24GB in buffer pool = 3M 8KB pages = 6M 4KB pages!

 But for textbook queries, assume only hundreds of buffer pages.

Example of Index Nested Loops (2/2)

Example: Reserves JOIN Sailors (natural join on sid)

Case 2: Hash-index (Alternative 1 or 2) on sid of Reserves

 Choose Reserves as inner

 Scan Sailors: 40K tuples, 500 page I/Os

 For each Sailors tuple

 1.2 I/Os to find index page with data entries

 Assuming uniform distribution, 2.5 matching records per sailor

 Cost of retrieving records is nothing further (Alt. 1clustered) or 1
(Alt. 2 clustered) or 2.5 I/Os (Alt. 2 unclustered)

 Total: 48,500 I/Os (clustered, alt. 1) 88,500 I/Os (clustered, alt.
2) or 148,500 I/Os (unclustered)

 Again assuming the buffer pool can’t contain the whole tables

Executing Joins: Sort-Merge

 Sort R and S on the join column (sid, PK of S)

 Then scan them to do a merge on join column

 S is scanned once, each row has unique sid

 Each R group (a certain sid) is scanned once

 Here only 2.5 records/group on average

 Cost: M log M + N log N + (M+N) (as we will see later)

 Text, pg. 403, estimates cost at 7500 I/Os for this example

 So better not to use the index in this case!

 Note the tables are roughly the same size, the sweet spot for

sort-merge join.

System R Optimizer

 Developed at IBM starting in the 1970’s

 Most widely used currently; works well for up to 10 joins

 Cost estimation

 Statistics maintained in system catalogs

 Used to estimate cost of operations and result sizes

 Considers combination of CPU and I/O costs

 Query Plan Space

 Only the space of left-deep plans is considered

 Cartesian products avoided

Left Deep Trees

 Consider nested-loop joins

 Inner tables need to be materialized because they are probed
repeatedly for each row of the outer table

 Materialized means available as a table, not just a stream of rows, so
can be probed by PK index.

 Left table = outer table

 Left table can be pipelined: rows used one at a time in order
(i.e., doesn’t need to be materialized)

 So Left-deep plans allow output of each operator to be
pipelined into the next operator without storing it in a
temporary relation

 i.e., Left Deep trees can be “fully pipelined”

 See pg. 407 for a two-join example

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash

index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Example of join with left table

pipelined and right table materialized

(Use hash

Index)

Cost Estimation

For each plan considered, must estimate:

 Cost of each operator in plan tree

 Depends on input cardinalities

 Operation and access type: sequential scan, index scan, joins

 Size of result for each operation in tree

 Use information about the input relations

 For selections and joins, assume independence of predicates

Size Estimation and Reduction Factors

 Maximum number of tuples is cardinality of cross product

 Reduction factor (RF) associated with each term reflects its

impact in reducing result size

 Implicit assumption that terms are independent!

 col = value has RF =1/NKeys(I), given index I on col

 col1 = col2 has RF = 1/max(NKeys(I1), NKeys(I2))

 col > value has RF = (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 100 tuples per page, 1000 pages

 Sailors:

 50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Evaluation Example

Cost: 1000+100*1000*500 I/Os

 R’s 1000 pages have 100*1000 rows
each of which causes a scan of S

 By no means the worst plan!

 Misses several opportunities:

 Selections could have been `pushed’
earlier

 No use of any available indexes

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested

Loops)

(On-the-fly)

(On-the-fly)
Plan:

Alternative Plan 1 (No Indexes)

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

 Main difference: push down selections

 Scan Reserves (1000) + write temp T1 (10 pages, if we

have 100 boats, uniform distribution)

 Scan Sailors (500) + write temp T2 (250 pages, if we

have 10 ratings)

 Sort-merge join T1 and T2

 Assume there are 5 buffers:

 Sort T1 (2*2*10), Sort T2 (2*4*250), Merge (10+250)

 Total: 4060 page I/Os

Alternative Plan 1 (No Indexes)

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash

index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Alternative Plan 2 (With Indexes)

(Use hash

Index)

 With clustered index on bid of Reserves, we get 100,000/100 =

1000 tuples on 1000/100 = 10 pages

 Inner Nested Loop join with pipelining (result not materialized)

 Join column sid is a key for Sailors

 At most one matching tuple, unclustered index on sid OK

 Decision not to push rating>5 before the join is based on

availability of sid index on Sailors

 Cost:

 Selection of Reserves tuples 10 I/Os

 For each, must get matching Sailors tuple (1000*1.2)

 Total 1210 I/Os

Alternative Plan 2 (With Indexes) Summary

 There are several alternative evaluation algorithms for each relational

operator.

 A query is evaluated by converting it to a tree of operators and

evaluating the operators in the tree.

 Must understand query optimization in order to fully understand the

performance impact of a given database design (relations, indexes) on

a workload (set of queries).

 Two parts to optimizing a query:

 Consider a set of alternative plans.

 Must prune search space; typically, left-deep plans only.

 Must estimate cost of each plan that is considered.

 Must estimate size of result and cost for each plan node.

 Key issues: Statistics, indexes, operator implementations.

