External Sorting

CSe634
Lecture 10

Slides based on “Database Management Systems™ 3' ed, Ramakrishnan and Gehrke

Why is Data Sorting Important?

» Data requested in sorted order

e.g., find students in increasing gpa order
» Sorting is first step in bulk loading B+ tree index

» Sorting useful for eliminating duplicate copies
Needed for set operations, DISTINCT operator

» Sort-merge join algorithm involves sorting

» Problem:sort | Gb of data with |MB of RAM, or |I00MB

Sort is given a memory budget, can use temp disk as needed

Focus is minimizing I/O, not computation as in internal sorting

In-memory vs. External Sorting

» If data fits in memory allocated to a sort, an in-memory
sort does the job.

» Otherwise, need external sorting, i.e., sort batches of data
in memory, write to files, read back, merge,...

2-Way External Sort: Requires 3 Bufters

» Pass |:Read a page, sort it (in-memory sort), write it

only one buffer page is used

» Pass 2, 3, ..., etc.:

three buffer pages used

S - >
| i | INPUT 1 \
OUTPUT > | |
| |
| | '{INPUT 2 —
s s
Disk Main memory buffers Disk

Two-Way External Merge Sort

6.2 (0.4 [87] [56] [31 [2] Il inputfile
v v v v v v v l PASS 0: in-memory sorts
34| (2.6 (49 (7.8 [56] [13] [2] B 1-pageruns
\ ya AN y4 \ ya \ y4
N7 N7 N7 PASS 1: merge

w
1N

2.3 4.7 1.3 2-page runs
4.6 8,9 5,6
DN PASS 2: merge
4.4 12 4-page runs
6,7 3,5
8.9 6
\-/ PASS 3:merge
1,2
2,3
3.4 8-page runs
4,5
6,6
7,8
9

Two-Way External Merge Sort

» Each pass we read + write each page in file.

» Number of pages N in the file determines number of passes
Ex: N = 7, round up to power-of-two 8 = 23, #passes = 4 (last slide)
Here 3 =log, 8 = ceiling(log, 7), so 4 = ceiling(log, N) + |

» Total number of passes is, using ceiling notation:
log, N |+1

» Total cost is: write & read all N pages for each pass:

2N(log, N |+1)

General External Merge Sort

More than 3 buffer pages. How can we utilize them?

» To sort a file with N > B pages™ using B buffer pages:
Pass 0: use B buffer pages. Produce| N / B| sorted runs of B pages each.
Example: B=10, N=120,N/B = 12,so0 |12 runs of 10 pages

Pass |, ..., etc.. merge B-I runs.
< > | _|mweur1 < >
| | > INPUT 2
2 OoUTPUT —
| |‘\ / | |
.~ [TINPUT B-1 —
i n Disk
Disk B Main memory buffers S

*1f N <= B, use an in-memory sort

Cost of External Merge Sort, as on pg. 427,

with yellow over over-simplistic conclusion: see next slide

» Example: with 5 buffer pages, sort 108 page file:
Pass O:f108 / 5_| = 22 sorted runs of 5 pages each (last run is only 3
pages)
Pass |I: |_22 / 4_|= 6 sorted runs of 20 pages each (last run is only 8
pages)
Pass 2: ceiling(6/4) = 2 sorted runs, 80 pages and 28 pages
Pass 3: Merge 2 runs to produce sorted file of 108 pages

Note 22 rounds up to power-of-4 64 = 43 so we see 3 passes of merging
using (up to) 4 input runs, each with one input buffer.

3 = ceiling(log, 22) where 4 = B-| and 22 = ceiling(N/B)
plus the initial pass, so 4 passes in all.

Number of passes: 1+ |_|Og B—ll_ N/ B—H

Cost = 2N * (# of passes) = 2*108%4 i/os

» This cost assumes the data is read from an input file and written to
another output file, and this i/o is counted

Cost of External Merge Sort

» Example: with 5 buffer pages, sort 108 page file:
Pass 0: ceiling(108/4) = 22 sorted runs of 5 pages each (last run is only 3 pages)
Pass |: ceiling(22/4) = 6 sorted runs of 20 pages each (last run is only 8 pages)
Pass 2: ceiling(6/4) = 2 sorted runs, 80 pages and 28 pages
Pass 3: Merge 2 runs into sorted file of 108 pages

Note 22 rounds up to power-of-4 64 = 43 so we see 3 passes of merging using (up
to) 4 input runs, each with one input buffer.

3 = ceiling(log, 22) where 4 = B-1 and 22 = ceiling(N/B)
plus the initial pass, so 4 Fasses in all.
» Number of passes: 1+|109s:[N/ BT]

» But the passes are not always all the same cost: look at writes and reads
over whole run (including any reading input from a file and/or writing the
output of the sort to a file, if not pipelined)

[Read N],write N, read N, write N, read N, write N, read N, [write N]

The bracketed amounts depend on whether or not the data is read from a file at
the start and written to a file at the end, or pipelined in and/or out.

» That’s 6N, 7N, or 8N i/os, not always the 8N as given in the book’s formula
» Cost = N * (# of read/writes of N) = 2N(#passes - |) up to 2N(#passes)

Cost of External Merge Sort, bigger file

» Number of passes (N>B): 1+ I_IOQ B—l’_ N/ B_ﬂ

» Cost = 2N * (# of passes) = O(NlogN) like other good sorts
» Example: with 5 buffer pages, sort 250 page file, including reading the
input data from a file and writing the output data to another file.
Pass 0: ceiling(250/5) = 50 sorted runs of 5 pages each
Pass |: ceiling(50/4) = |3 sorted runs of 20 pages each (last run is only
|0 pages)
Pass 2: ceiling(13/4) = 4 sorted runs, 80 pages and |0 pages
Pass 3: Sorted file of 250 pages
Note 50 again rounds up to power-of-4 64 = 43 so we see 3 passes of
merging using (up to) 4 input runs, plus the initial pass, so 4 passes again
Cost = 2%250*4 i/os
But 50 is getting up in the vicinity of 64, where we start needing another
pass

Cases in sorting

4

v

v

v

v

N <= B: data fits in memory: in-memory sort
B <N <= B*(B-1): 2-pass external sort

(create up to B-1 runs of B pages, do one big merge)
B*(B-1) < N <= B*(B-1)? 3-pass external sort

(create up to (B-1)? runs of B, do merge to B-1 runs, do second
merge pass)

If B = 10K (80MB with 8KB blocks, ordinary size now)
B*(B-1) = 10K*I0K = [00M blocks = 800MB: max for 2-pass sort
B*((B-1)2= 1000G = | T = 8TB: max for 3-pass sort

So rare to see 4-pass sort today

We made a graph of showing Cost = 2*N for N range of 2-

pass sort, Cost = 4*N for higher N, causing jump in Cost at
start of 3-pass region

Number of Passes of |

(from text pg, 428)

xternal Sort

N B=3 B=5 |B=9 |B=17 B=129 B=257
100 7 £ 3 2 1 1
1,000 10 | 5 = 3 2 2
10,000 13 | 7 5 4 2 2
100,000 17 1 9 6 5 3 3
1,000,000 20 | 10 7 5 3 3
10,000,000 23 | 12 8 6 = 3
100,000,000 | 26 | 14 9 7 = 4
1,000,000,000) 30 | 15 10 8 5 4

All these B values look tiny today!

Internal Sort Algorithms

» Quicksort is a fast way to sort in memory.
» An alternative is “tournament sort” (a.k.a.“heapsort”)
» Radix sort is another

» This is studied in data structures

[/0O for External Merge Sort

Assumed so far that we do I/O a page at a time (say 4KB or 8KB)
But larger-block disk 1/O is much faster (not on SSD, however)
Ex: 4KB takes 4ms, | 00KB takes 5ms (approx.)

» In fact, we can read a block of pages sequentially!

» Suggests we should make each buffer (input/output) be a
block of pages
Need cooperation with buffer manager, or own buffer manager
But this will reduce fan-out during merge passes!

In practice, most files still sorted in -2 passes

HDD vs. SSD
» HDD typical values:

100 io/s random reads/writes

|00 MB/s sequential read or write

Means 100*8KB/s = 800 KB/s = .8MB/s using 8KB random reads
That’s less than % of sequential reading speed!

In DB case with tablespaces, not really “random i/o”, so say
multiblock i/o is 25x faster than block i/o.

» SSD typical values: 5x faster sequential i/o, 125x faster on
multiblock i/o, but 10x cost/GB.
500 MB/s sequential read, also write on new SSD
Writes slow down on full disk (needs to erase before write)

8KB ios: (500MB/s)/8KB = 64K iofs

See higher numbers in product literature, but need many i/os in
progress to do that.

Example of a Blocked I/O Sort

Example: N=1M blocks, B=5000 blocks memory for sort
Use 32 blocks in a big buffer, so have 5000/32 = 156 big buffers

File is IM/32 = 31250 big blocks

» Pass 0:sort using |56 big buffers to first runs: get
ceiling(31250/156) = 201 runs

» Pass |: merge using 155 big buffers to 2 runs
» Pass 2: merge 2 runs to final result

See 3 passes here, vs. 2 using “optimized” sort, pg. 43|
» Cost = 2N*3 = 6N, vs. 4N using ordinary blocks
» But I/O is 4ms vs. (5/32)ms, so 6*(5/32)=1 vs.4*4 = 16,a win.

Prefetching to speed up reading

» To reduce wait time for I/O request to complete, can
prefetch into "shadow block’

Potentially, more passes; in practice, most files still sorted in
2-3 passes

INPUT 1
INPUT 1'

- —>, Y \ < —
|] |]
| | NP2 ——=. |OUTPUT]

! o 0 O
*0 0 ‘ INPUT 2 OUTPUT' .
1 |
o 0 O
__/' b e
) block size
D|Sk INPUT k D|Sk
INPUT k'

B main memory buffers, k-way merge

Pretetching, tuning i/o

<
<
<
<

v

Note this is a general algorithm, not just for sorting
Can be used for table scans too
Database have |/O related parameters

Oracle:
DB _FILE._ MULTIBLOCK READ COUNT

Says how many blocks to read at once in a table scan

Using B+ Trees for Sorting

» Scenario: Table to be sorted has B+ tree index on sorting
column(s).

» ldea: Can retrieve records in order by traversing leaf pages.
» Is this a good idea?

» Cases to consider:
B+ tree is clustered Good idea!
B+ tree is not clustered Could be a very bad idea!

(Already existent) Clustered B+ Tree
Used for Sorting

» Cost: root to the left-most

leaf, then retrieve all leaf Index
) (Directs search)
pages (Alternative 1)

» If Alternative 2 is used,
additional cost of N B R
retrieving data records: yZauiiin RS
each page fetched just
once

Data Records

Always better than external sorting!

Unclustered B+ Tree Used for Sorting

» Alternative (2) for data entries; each data entry
contains rid of a data record. In general, one |/O per
data record!

Index
(Directs search)

Data Entries
("Sequence set")

ek
)

Data Records

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 {600,000 100,000 1,000,000 |10,000,000
1,000,000 |8,000,000 |1,000,000 10,000,000 100,000,000
10,000,000 {80,000,000 | 10,000,000 | 100,000,000 |1,000,000,000

* p: # of records per page (p=100 is the more realistic value)
* B=1,000 and block size=32 for sorting
* Assumes the blocks are never found in the buffer pool

Sorting Records: Benchmarks

» Parallel sorting benchmarks/competitions exist in practice
» Datamation: Sort |M records of size 100 bytes
(considered obsolete now at

Typical DBMS: 5 minutes
2001: .48 sec. at (most recent | could find)
Oracle on dbs3: sorts 80MB in 32 sec. with 8GB for PGA.

» Newer benchmarks:
Minute Sort: How many TB can you sort in | minute!?

2016: 37TB/55TB at Tencent Corp., China
Cloud Sort: How much in USD to sort 100 TB using a public
cloud

2015:$451 on 330 Amazon EC2 r3.4xlarge nodes, by profs at UCSD.
2016: $144 using Alibaba Cloud, by profs at Nanjing U, others

http://sortbenchmark.org/
http://research.cs.wisc.edu/wind/Publications/wind-sort-tr.pdf
http://sortbenchmark.org/TencentSort2016.pdf

Oracle on dbs3: .5 min to sort 1M records,
11 min to sort 250M records

» Select median(k250k) from bench250;
250M records, roughly 2GB data (250M*8bytes/row)
» Suppose Oracle allots 100 MB for this sort
Then 2GB/100MB= 20 runs in pass 0
|00MB/8KB = 12800 pages of buffer (B=12800)
» So pass | merges 20 runs into final sorted output
» The DB reads the table (1.7 min) then writes/reads the 2GB,
then the output is processed on the fly.
2*%2GB/8KB = (1/2)M i/o, at about 500 i/o/s
(1/2)Milos/(500 i/os/s) = 250 s = 4.2 min, plus 1.7 = 6 min

» Works out roughly. First reads = table scan, faster because of
contiguous data, prefetching

» Additional 5 min or so for in-memory sorting, CPU bound

Pipelined Sort Engine

» How it works: stream of tuples in, stream of tuples out:
Initialize/create sort object: given B, number memory buffers
Put_tuple, put_tuple, put_tuple,... add data
Get_tuple: hangs for a while, returns first sorted tuple
Get_tuple, get_tuple, ... rest of sorted tuples
Done!

» The sort doesn’t need to know how many tuples will be added!

» It just fills B buffers, sorts, outputs run, fills again, ...

» When it sees get_tuple, it does know how much data is involved,
can plan a multi-pass sort if needed.

» This possibility of pipelined sort is mentioned on pg. 496, but usually
the authors assume file-to-file sort

» This adds write N, read N to the plan, 2N to cost.

Summary

» External sorting is important; DBMS may dedicate part of
buffer pool for sorting! Oracle: separate memory area

» External merge sort minimizes disk /O cost:

Pass 0: Produces sorted runs of size B (# buffer pages). Later
passes: merge runs.

of runs merged at a time depends on B, and block size.
Larger block size means less I/O cost per page.
Larger block size means smaller # runs merged.

In practice, # of passes rarely more than 2 or 3, for properly
managed database and decent sized memory.

Using SSD: 5x faster for this needed sequential i/o, but writes may
slow down over time.

Summary, cont.

» Choice of internal sort algorithm may matter:
Quicksort: Quick!
Heap/tournament sort: slower (2x), longer runs

» The best sorts are wildly fast:

Despite 40+ years of research, we're still improving!

» Clustered B+ tree is good for avoiding sorting;
unclustered tree is usually useless.

