
External Sorting

CS634
Lecture 10

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Why is Data Sorting Important?

 Data requested in sorted order

 e.g., find students in increasing gpa order

 Sorting is first step in bulk loading B+ tree index

 Sorting useful for eliminating duplicate copies

 Needed for set operations, DISTINCT operator

 Sort-merge join algorithm involves sorting

 Problem: sort 1Gb of data with 1MB of RAM, or 100MB

 Sort is given a memory budget, can use temp disk as needed

 Focus is minimizing I/O, not computation as in internal sorting

In-memory vs. External Sorting

 If data fits in memory allocated to a sort, an in-memory

sort does the job.

 Otherwise, need external sorting, i.e., sort batches of data

in memory, write to files, read back, merge,…

2-Way External Sort: Requires 3 Buffers

 Pass 1: Read a page, sort it (in-memory sort), write it

 only one buffer page is used

 Pass 2, 3, …, etc.:

 three buffer pages used

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

Two-Way External Merge Sort
Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0: in-memory sorts

PASS 1: merge

PASS 2: merge

PASS 3:merge

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

Two-Way External Merge Sort

 Each pass we read + write each page in file.

 Number of pages N in the file determines number of passes

Ex: N = 7, round up to power-of-two 8 = 23, #passes = 4 (last slide)

Here 3 = log2 8 = ceiling(log2 7), so 4 = ceiling(log2 N) + 1

 Total number of passes is, using ceiling notation:

 Total cost is: write & read all N pages for each pass:

 1log 2 N

 1log2 2 NN

General External Merge Sort

 To sort a file with N > B pages* using B buffer pages:

 Pass 0: use B buffer pages. Produce sorted runs of B pages each.

 Example: B=10, N=120, N/B = 12, so 12 runs of 10 pages

 Pass 1, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

More than 3 buffer pages. How can we utilize them?

*If N <= B, use an in-memory sort

Cost of External Merge Sort, as on pg. 427,
with yellow over over-simplistic conclusion: see next slide

 Example: with 5 buffer pages, sort 108 page file:
 Pass 0: = 22 sorted runs of 5 pages each (last run is only 3

pages)

 Pass 1: = 6 sorted runs of 20 pages each (last run is only 8
pages)

 Pass 2: ceiling(6/4) = 2 sorted runs, 80 pages and 28 pages

 Pass 3: Merge 2 runs to produce sorted file of 108 pages

Note 22 rounds up to power-of-4 64 = 43 so we see 3 passes of merging
using (up to) 4 input runs, each with one input buffer.

3 = ceiling(log4 22) where 4 = B-1 and 22 = ceiling(N/B)

plus the initial pass, so 4 passes in all.

Number of passes:

Cost = 2N * (# of passes) = 2*108*4 i/os

 This cost assumes the data is read from an input file and written to
another output file, and this i/o is counted

 1 1 log /B N B

 108 5/

 22 4/

Cost of External Merge Sort
 Example: with 5 buffer pages, sort 108 page file:

 Pass 0: ceiling(108/4) = 22 sorted runs of 5 pages each (last run is only 3 pages)

 Pass 1: ceiling(22/4) = 6 sorted runs of 20 pages each (last run is only 8 pages)

 Pass 2: ceiling(6/4) = 2 sorted runs, 80 pages and 28 pages

 Pass 3: Merge 2 runs into sorted file of 108 pages

Note 22 rounds up to power-of-4 64 = 43 so we see 3 passes of merging using (up
to) 4 input runs, each with one input buffer.

3 = ceiling(log4 22) where 4 = B-1 and 22 = ceiling(N/B)

plus the initial pass, so 4 passes in all.

 Number of passes:

 But the passes are not always all the same cost: look at writes and reads
over whole run (including any reading input from a file and/or writing the
output of the sort to a file, if not pipelined)
 [Read N],write N, read N, write N, read N, write N, read N, [write N]

 The bracketed amounts depend on whether or not the data is read from a file at
the start and written to a file at the end, or pipelined in and/or out.

 That’s 6N, 7N, or 8N i/os, not always the 8N as given in the book’s formula

 Cost = N * (# of read/writes of N) = 2N(#passes - 1) up to 2N(#passes)

 1 1 log /B N B

Cost of External Merge Sort, bigger file
 Number of passes (N>B):

 Cost = 2N * (# of passes) = O(NlogN) like other good sorts

 Example: with 5 buffer pages, sort 250 page file, including reading the
input data from a file and writing the output data to another file.
 Pass 0: ceiling(250/5) = 50 sorted runs of 5 pages each

 Pass 1: ceiling(50/4) = 13 sorted runs of 20 pages each (last run is only
10 pages)

 Pass 2: ceiling(13/4) = 4 sorted runs, 80 pages and 10 pages

 Pass 3: Sorted file of 250 pages

Note 50 again rounds up to power-of-4 64 = 43 so we see 3 passes of
merging using (up to) 4 input runs, plus the initial pass, so 4 passes again

Cost = 2*250*4 i/os

But 50 is getting up in the vicinity of 64, where we start needing another
pass

 1 1 log /B N B

Cases in sorting

 N <= B: data fits in memory: in-memory sort

 B < N <= B*(B-1): 2-pass external sort
 (create up to B-1 runs of B pages, do one big merge)

 B*(B-1) < N <= B*(B-1)2 3-pass external sort
 (create up to (B-1)2 runs of B, do merge to B-1 runs, do second

merge pass)

 If B = 10K (80MB with 8KB blocks, ordinary size now)
 B*(B-1) = 10K*10K = 100M blocks = 800MB: max for 2-pass sort

 B*((B-1)2 = 1000G = 1T = 8TB: max for 3-pass sort

 So rare to see 4-pass sort today

 We made a graph of showing Cost = 2*N for N range of 2-
pass sort, Cost = 4*N for higher N, causing jump in Cost at
start of 3-pass region

All these B values look tiny today!

Number of Passes of External Sort

(from text pg, 428)

 N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

Internal Sort Algorithms

 Quicksort is a fast way to sort in memory.

 An alternative is “tournament sort” (a.k.a. “heapsort”)

 Radix sort is another

 This is studied in data structures

I/O for External Merge Sort

Assumed so far that we do I/O a page at a time (say 4KB or 8KB)

But larger-block disk I/O is much faster (not on SSD, however)

Ex: 4KB takes 4ms, 100KB takes 5ms (approx.)

 In fact, we can read a block of pages sequentially!

 Suggests we should make each buffer (input/output) be a

block of pages

 Need cooperation with buffer manager, or own buffer manager

 But this will reduce fan-out during merge passes!

 In practice, most files still sorted in 1-2 passes

HDD vs. SSD

 HDD typical values:

 100 io/s random reads/writes

 100 MB/s sequential read or write

 Means 100*8KB/s = 800 KB/s = .8MB/s using 8KB random reads

 That’s less than 1% of sequential reading speed!

 In DB case with tablespaces, not really “random i/o”, so say
multiblock i/o is 25x faster than block i/o.

 SSD typical values: 5x faster sequential i/o, 125x faster on
multiblock i/o, but 10x cost/GB.

 500 MB/s sequential read, also write on new SSD

 Writes slow down on full disk (needs to erase before write)

 8KB ios: (500MB/s)/8KB = 64K io/s

 See higher numbers in product literature, but need many i/os in
progress to do that.

Example of a Blocked I/O Sort

Example: N=1M blocks, B=5000 blocks memory for sort

Use 32 blocks in a big buffer, so have 5000/32 = 156 big buffers

File is 1M/32 = 31250 big blocks

 Pass 0: sort using 156 big buffers to first runs: get

ceiling(31250/156) = 201 runs

 Pass 1: merge using 155 big buffers to 2 runs

 Pass 2: merge 2 runs to final result

See 3 passes here, vs. 2 using “optimized” sort, pg. 431

 Cost = 2N*3 = 6N, vs. 4N using ordinary blocks

 But I/O is 4ms vs. (5/32)ms, so 6*(5/32)=1 vs. 4*4 = 16, a win.

Prefetching to speed up reading

 To reduce wait time for I/O request to complete, can

prefetch into `shadow block’

 Potentially, more passes; in practice, most files still sorted in

2-3 passes

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

Prefetching, tuning i/o

 Note this is a general algorithm, not just for sorting

 Can be used for table scans too

 Database have I/O related parameters

 Oracle:

 DB_FILE_MULTIBLOCK_READ_COUNT

 Says how many blocks to read at once in a table scan

Using B+ Trees for Sorting

 Scenario: Table to be sorted has B+ tree index on sorting

column(s).

 Idea: Can retrieve records in order by traversing leaf pages.

 Is this a good idea?

 Cases to consider:

 B+ tree is clustered Good idea!

 B+ tree is not clustered Could be a very bad idea!

(Already existent) Clustered B+ Tree

Used for Sorting

 Cost: root to the left-most

leaf, then retrieve all leaf

pages (Alternative 1)

 If Alternative 2 is used,

additional cost of

retrieving data records:

each page fetched just

once

Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Unclustered B+ Tree Used for Sorting

 Alternative (2) for data entries; each data entry

contains rid of a data record. In general, one I/O per

data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000

100,000 600,000 100,000 1,000,000 10,000,000

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000

10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

• p: # of records per page (p=100 is the more realistic value)
• B=1,000 and block size=32 for sorting
• Assumes the blocks are never found in the buffer pool

Sorting Records: Benchmarks

 Parallel sorting benchmarks/competitions exist in practice

 Datamation: Sort 1M records of size 100 bytes
(considered obsolete now at http://sortbenchmark.org/)

 Typical DBMS: 5 minutes

 2001: .48 sec. at UW (most recent I could find)

 Oracle on dbs3: sorts 80MB in 32 sec. with 8GB for PGA.

 Newer benchmarks:

 Minute Sort: How many TB can you sort in 1 minute?

 2016: 37TB/55TB Tencent Sort at Tencent Corp., China

 Cloud Sort: How much in USD to sort 100 TB using a public
cloud

2015: $451 on 330 Amazon EC2 r3.4xlarge nodes, by profs at UCSD.

2016: $144 using Alibaba Cloud, by profs at Nanjing U, others

http://sortbenchmark.org/
http://research.cs.wisc.edu/wind/Publications/wind-sort-tr.pdf
http://sortbenchmark.org/TencentSort2016.pdf

Oracle on dbs3: .5 min to sort 1M records,

11 min to sort 250M records

 Select median(k250k) from bench250;

 250M records, roughly 2GB data (250M*8bytes/row)

 Suppose Oracle allots 100 MB for this sort

 Then 2GB/100MB= 20 runs in pass 0

 100MB/8KB = 12800 pages of buffer (B=12800)

 So pass 1 merges 20 runs into final sorted output

 The DB reads the table (1.7 min) then writes/reads the 2GB,
then the output is processed on the fly.

 2*2GB/8KB = (1/2)M i/o, at about 500 i/o/s

 (1/2)Mi/os/(500 i/os/s) = 250 s = 4.2 min, plus 1.7 = 6 min

 Works out roughly. First reads = table scan, faster because of
contiguous data, prefetching

 Additional 5 min or so for in-memory sorting, CPU bound

Pipelined Sort Engine

 How it works: stream of tuples in, stream of tuples out:

 Initialize/create sort object: given B, number memory buffers

 Put_tuple, put_tuple, put_tuple,… add data

 Get_tuple: hangs for a while, returns first sorted tuple

 Get_tuple, get_tuple, … rest of sorted tuples

 Done!

 The sort doesn’t need to know how many tuples will be added!

 It just fills B buffers, sorts, outputs run, fills again, …

 When it sees get_tuple, it does know how much data is involved,
can plan a multi-pass sort if needed.

 This possibility of pipelined sort is mentioned on pg. 496, but usually
the authors assume file-to-file sort

 This adds write N, read N to the plan, 2N to cost.

Summary

 External sorting is important; DBMS may dedicate part of
buffer pool for sorting! Oracle: separate memory area

 External merge sort minimizes disk I/O cost:

 Pass 0: Produces sorted runs of size B (# buffer pages). Later
passes: merge runs.

 # of runs merged at a time depends on B, and block size.

 Larger block size means less I/O cost per page.

 Larger block size means smaller # runs merged.

 In practice, # of passes rarely more than 2 or 3, for properly
managed database and decent sized memory.

 Using SSD: 5x faster for this needed sequential i/o, but writes may
slow down over time.

Summary, cont.

 Choice of internal sort algorithm may matter:

 Quicksort: Quick!

 Heap/tournament sort: slower (2x), longer runs

 The best sorts are wildly fast:

 Despite 40+ years of research, we’re still improving!

 Clustered B+ tree is good for avoiding sorting;

unclustered tree is usually useless.

