valuation of Relational Operators:
Chap. 14

CSo34
Lecture 11

Slides based on “Database Management Systems™ 3' ed, Ramakrishnan and Gehrke

Architecture of a DBMS

User
LSQL Query

Query Compiler

I Query Plan (optimized)

Execution Engine

Index and Record requests

Index/File/Record Manager]

I Page Commands

Buffer Manager

I Read/Write pages

Disk Space Manager

A first course in database systems, 3" ed, Ullman and Widom

2

Relational Algebra

» Relational operators:

Selection O

Projection 7T

Join)] Combines several relations using conditions

Set-difference — Union U Intersection N

Aggregation and Grouping

Example Schema

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

» Similar to old schema; rname added

» Reserves:
40 bytes long tuple, 00K records, 100 tuples per page, 1000 pages

» Sailors:
50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

Selections with Simple Condition

O wora(R)

» Case |:No index, Unsorted data

Do scan

» Case 2: No Index, Sorted Data
Perform binary search on file (exact match or ranges)
O(log M), M = number of pages in file

» Case 3: Index Available

Is the index B+-Tree or Hash?

Is it clustered or not!?

Using an Index for Selections

» Cost depends on
Number of qualifying tuples
Clustering
» Cost has two components:
Finding qualifying data entries (typically small)
Retrieving records (could be large w/o clustering)
» Consider Reserves, assume 10% of tuples satisfy condition
Result has 10K tuples, 100 pages
With clustered index, cost is little more than 100 I/Os
If unclustered, up to 10000 I/Os!

For Unclustered Indexes

» Important refinement:
|. Find qualifying data entries
2.Sort the rid’s of the data records to be retrieved
3. Fetch rids in order

» Ensures that each data page is looked at just once
although number of I/Os still higher than with clustering

Example from Oracle: unclustered index on
K500K (added to table bench)

SQL> select k500k, rowid from bench where k500k>=400 and k500k<403;
K500K ROWID

400 AAAS8A4AAACAAADZgAAU
400 AAAS8A4AACAAAGUHAAW :% k500k
401 AAA8A4AACAAAFVzAAY
401 AAA8A4AACAAAGRVAAC } k500k
402 AAA8A4AACAAAEiLAAA ~
402 AAA8A4AACAAAGWmMAAB
402 AAASA4AACAAAGKWAAW - k500k=402:4 data entries
402 AAAS8A4AACAAAHPNAAE

400: 2 data entrie

401: 2 data entries

» RIDs for a certain key are in sorted order in index.
» With 3 keys, the whole set of RIDs is not in RID order.

» This is an index-only query, no need to access heap table.

Example from Oracle: unclustered index on
K500K

SQL> select kseq from bench250 where k500k>=400 and k500k<403;
KSEQ

432909

894121

1226517

247946329
248832188
249145270
249135567

1517 rows selected.

» Note that the RIDs were sorted before the KSEQ values were obtained from the heap table.
» For the smaller bench table, rid sort isn’t done for this query.

» Mysql also sorts RIDs before at least some lookups, starting with v. 5.6 (“MRR” Multi Range
Read, new feature)

» Rid sort works for RAID set too: each disk is given a sorted set of its

General Conditions Selections

» Condition may be composite
In conjunctive form: easier to deal with

At least one disjunction: less favorable case

» Disjunctive form
Only one of the conditions, if met, qualifies tuple
Even if some disjunct is optimized, the other(s) may require scan
In general, this case dealt with using set union

Most DBMS optimizers focus on conjunctive forms

Evaluating Conjunctive Forms (1/2)

» Find the most selective access path, retrieve tuples using it, and
apply any remaining terms that don’t match the index

Most selective access path: An index or file scan that we estimate will
require the fewest page |/Os

Example: day<8/9/94 AND bid=5 AND sid=3

B+ tree index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple

Similarly, a hash index on <bid, sid> could be used; day<8/9/94 must
then be checked.

Evaluating Conjunctive Forms (2/2)

» Intersect rid’s

» If we have two or more matching indexes that use
Alternatives (2) or (3) for data entries:
Get sets of rids of data records using each matching index
Then intersect these sets of rids (we’ll discuss intersection soon!)
Retrieve the records and apply any remaining terms
Example: day<8/9/94 AND bid=5 AND sid=3
B+ tree index on day and a hash index on sid, both using Alt. (2)

Retrieve rids satisfying day<8/9/94 using the B+ tree, rids satisfying
sid=3 using the hash, intersect, retrieve records and check bid=5

Intersecting RIDs via Index JOIN

Example: day<8/9/94 AND bid=5 AND sid=3
B+ tree index on day and a hash index on sid, both using Alt. (2)

Retrieve rids satisfying day<8/9/94 using the B+ tree, rids
satisfying sid=3 using the hash, intersect, retrieve records and

check bid=5
Here the intersection is hopefully pipelined
Another way to achieve this: Join the two indexes as files

As tables, indexes are || = (rid, day) and 12 = (rid, sid)

Join them: Il where day<8/9/94 JOIN 12 where sid = 3

Obtain (rid, day, sid) satisfying the two conditions and providing rids
Pg. 446: Oracle does this.

Projection

» Remove unwanted attributes

» Eliminate any duplicate tuples produced (the hard part)

Projection with Sorting

» Modify Pass 0 of external sort to eliminate unwanted fields
Produce runs of about 2B pages are produced

Tuples in runs are smaller than input tuples
Size ratio depends on number and size of fields that are dropped

» Modify merging passes to eliminate duplicates
Thus, number of result tuples smaller than input

Difference depends on number of duplicates

» Cost
In Pass 0, read original relation (size M), write out same number of smaller
tuples

In merging passes, fewer tuples written out in each pass. Using Reserves
example, 1000 input pages reduced to 250 in Pass O if size ratio is 0.25

Projection with Sorting

» Can be done without modifying sort:

I. Do attribute-dropping before feeding data (pipelined) to sort, end
up with T pages.

2. Sort result

3. Post-process by watching for new row-values as data is produced.

» Cost

In step |, read original relation (size M), write out same number of smaller
tuples

In merging passes, same number of tuples written out in each pass. Use
normal sort cost for M pages, 2M * (# of passes)

Projection with Hashing

» Partitioning phase:

Read R using one input buffer. For each tuple, discard unwanted
fields, apply hash function h/ to choose one of B-|output buffers

Each output buffer is feeding a run on disk

Result is B-1 partitions (of tuples with no unwanted fields), tuples
from different partitions guaranteed to be distinct

See next slide for diagram

» Duplicate elimination phase: process runs from partitioning
phase. Each run forms a partition of the data

Hash Projection: Partitioning Phase

» Partition R using hash function h

» Duplicates will hash to the same partition

Original
Relation
>

INPUT

N~V
Disk

h
fu n%%Pon

h

OUTPUT
1

2

00 ¢
B-1

Partitions
S

B main memory buffers

Disk

B-1

Hash Projection: Second Phase

Read in a partition of R, hash it using h2 (<> h!)
Discard duplicates as go along.

When partition is all read in, scan the hash table and write it out as
part of the projection result

Partitions

of R Projection Result
Hash table for partition
T _
hash Ri (< B pages) —
fn .
h2 o 0 0 .
T d/‘hz o0 0
oo > or I >
Input buffer Output []
for R buffer
N~ N~

Disk B main memory buffers Disk

Projection with Hashing

» Partitioning phase: ends up with partitions of data, each held in a
run on disk

» Duplicate elimination phase:

For each partition, read it and build an in-memory hash table, using
hash h2 on all fields, while discarding duplicates

If partition does not fit in memory, can apply hash-based projection
algorithm recursively to this partition

» Cost

Read R, write out each tuple, but fewer fields, size T <= M. Result
read in next phase.Total i/o cost: M + 2T<= 3M, similar to sort if it
can be done in 2 passes and has pipelined output.

Discussion of Projection

» Sort-based approach is the standard
better handling of skew and result is sorted.
Hashing is more parallelizable
» If index on relation contains all wanted attributes in its
search key, do index-only scan
Apply projection techniques to data entries (much smaller!)
» If an ordered (i.e., tree) index contains all wanted attributes
as prefix of search key, can do even better:
Retrieve data entries in order (index-only scan)

Discard unwanted fields, compare adjacent tuples to check for
duplicates

Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=51.sid

» Most frequently occurring in practice
» We will consider more complex join conditions later

» Cost metricc: number of I/Os

lgnore output costs

Simple Nested Loops Join

foreach tuple r in R do
foreach tuple s in S do
if r; == s; then add <r, s> to result

» For each tuple in the outer relation R, we scan the entire inner
relation S.

Cost: M+ pgy *M*N = 1000 + 100*1000*500 I/Os

» Page-oriented Nested Loops join:
For each page of R, get each page of S, and write out matching pairs
Cost: M+ M*N = 1000 + 1000*500
If smaller relation (S) is outer, cost = 500 + 500*[000

Block Nested Loops Join

» one page input buffer for scanning the inner S
» one page as the output buffer
» remaining pages to hold " "block” of outer R

For each matching tuple r in R-block, s in S-page, add <r, s> to result.
Then read next R-block, scan §, etc.

R &S Join Result
Block of R

(B-2 pages)

%ﬂ

Input buffer for S Output buffer

v

v

v

vV v

Examples of Block Nested Loops

Cost: Scan of outer + #outer blocks * scan of inner
Houter blocks =

| # of pages of outer / blocksize |

With Reserves (R) as outer, and 100 pages per block:
Cost of scanning R is 1000 I/Os; a total of 10 blocks.
Per block of R, we scan Sailors (S); 10*500 I/Os.
Total 1000 + 10*500 = 6000 i/os.

Need [0l buffer pages for this.

With 100-page block of Sailors as outer:
Cost of scanning S is 500 1/Os; a total of 5 blocks.
Per block of S, we scan Reserves; 5*1000 I/Os.
Total 500 + 5*1000 = 5500 i/os. Same ballpark as above.

Compare these to page-oriented NLJ: 500,000 i/o or worse!
SSD: is equally helped by this kind of “block” algorithm

Executing Joins: Index Nested Loops

foreach tuple r in R do
foreach tuple s in S where r; ==s; do
add <r, s> to result

Cost = M + (M*pg) * (cost of finding matching S tuples)
M = number of pages of R, pg = number of R tuples per page
» If relation has index on join attribute, make it inner relation

For each outer tuple, cost of probing inner index is 1.2 for hash
index, 2-4 for B+, plus cost to retrieve matching S tuples

Clustered index typically single I/O (Alt 2) or none (Alt. |)
Unclustered index | I/O per matching S tuple

Example of Index Nested Loops (1/2)

Case |: Hash-index (Alternative 2) on sid of Sailors
» Choose Sailors as inner relation
» Scan Reserves: 100K tuples, 1000 page 1/Os

» For each Reserves tuple
1.2 I/Os to get data entry in index
1 1/0O to get (the exactly one) matching Sailors tuple (primary key)

» Total: 221,000 I/Os

» Most of these i/0’s are random (within tablespace), so SSD
would be about 25x faster than HDD.

Example of Index Nested Loops (2/2)

Case 2: Hash-index (Alternative 2) on sid of Reserves
» Choose Reserves as inner
» Scan Sailors: 40K tuples, 500 page I/Os

» For each Sailors tuple
1.2 1/Os to find index page with data entries
Assuming uniform distribution, 2.5 matching records per sailor

Cost of retrieving records is nothing (Alt | clustered), single I/O (Alt.2
clustered index) or 2.5 I/Os (unclustered index)

» Total: 48,500 I/Os (clustered Alt 1), 88,500 I/Os (clustered Alt 2) or
148,500 1/Os (unclustered)

» Most of these i/o’s are random (within tablespace), so SSD would
be about 25x faster than HDD.

Sort-Merge Join

» Sort R and S on the join column (book assumes file-to-file
sort, no pipelining)
» Then scan them to do a merge on join column:
Advance scan of R until current R-tuple >= current S tuple
Then, advance scan of S until current S-tuple >= current R tuple
Repeat until current R tuple = current S tuple

At this point, all R tuples with same value in Ri (current R group)
and all S tuples with same value in §j (current S group) match

Output <r, s> for all pairs of such tuples

May have to rescan part of one of the input files if have pages of duplicate
join keys vs. multiple matching join keys

Resume scanning R and S

Sort-Merge Join Cost

» R is scanned once

» Each S group is scanned once per matching R tuple

Multiple input-file scans per group needed only if S records with same
join attribute value span multiple pages

Multiple such scans of an S group are likely to find needed pages in
buffer
» Cost: (assume B buffers)
Sort(R) + Sort(S) + merge
2M (1 +log ;. (M/B)) + 2N (I +log_; (N/B)) + (M+N)
The cost of scanning, M+N, could be M*N worst case (very unlikely!)

In many cases, the join attribute is primary key in one of the tables,
which means no duplicates in one merge stream.

Since both sort and merge use sequential i/o, SSD is “only” 5x faster
than HDD here.

2-Pass Sort-Merge Join

» With enough buffers, sort can be done in 2 passes
First pass generates N/B sorted runs of B pages each

If one page from each run + output buffer fits in memory, then merge
can be done in one pass; denote larger relation by L

L/B + | <= B, holds if (approx) B> gqr L <B?
» One optimization of sort allows runs of 2B on average

First pass generates N/2B sorted runs of 2B pages each

Another optimization (pg, 462) runs the two sorts side-by-side and
pipelines their results into the final merge, avoiding intermediate files.
(But we’re not officially covering these optimizations)

» Merge can be combined with filtering of matching tuples

» The cost of sort-merge join becomes 3(M+N), assuming both M
and N are < B? and the sorts-to-merge are pipelined.

Hash-Join: Partitioning Phase

» Partition both relations using hash function h
» R tuples in partition i will only match S tuples in partition |
» This is the similar to the partitioning phase of Projection by Hashing

Original
Relations OUTPUT Partitions
R 1 S
1
INPUT 2 ,
> fupl%%lhon
e o o ® 0 o 0 9O
h B-1
¢ B-1

N~V Y~

Disk B main memory buffers Disk

Hash-Join: Probing Phase

Read in a partition of R, hash it using h2 (<> h!)
Scan matching partition of S, search for matches.

Partitions _
of R&S Join Result
Hash table for partition
S
hash Ri (k < B-1 pages) —
fn .
h2 . o 0 0 .
éhz L2 2
00 0 \\ . N
Input bu_ffer Output .
== for Si buffer .
Disk B main memory buffers Disk

Note: A smaller table has smaller partitions, so each of its
partition hash tables will more easily fit in memory

Hash-Join Properties

» #Hpartitions k <= B-| because one buffer is needed for scanning
input
» Assuming uniformly sized partitions, and maximizing k:
k= B-1, and M/(B-1) = size of one partition <= B-2, i.e.,, B> VM
M is smaller of the two relations!

So best to use the smaller table’s partitions for the second-phase hash
tables.

i.e., we can take advantage of one table being small, unlike sort-merge.
» If the hash function does not partition uniformly, one or more
second-phase partitions may not fit in memory

Can apply hash-join technique recursively to do the join of this R-
partition with corresponding S-partition.

Cost of Hash-Join

» In partitioning phase, read+write both R and S: 2(M+N)

» In matching phase, read both R and S: M+N
(assumes hash tables fit in memory, B >J/M)
Note M can be size of the smaller table here.

» With sizes of 1000 and 500 pages, total is 4500 1/Os

» SSD:i/os are sequential, so “only” 5x faster.

Hash-Join vs Sort-Merge Join

» Given sufficient amount of memory both have a cost of
3(M+N) I/Os

Assumes no pipelining into the whole operation, so both input
tables need full scan, M+N i/os.

lgnores any cost of materializing the output of the operation.

» Hash Join superior on this count if relation sizes differ
greatly

» Hash Join shown to be highly parallelizable, unlike sort.

» Sort-Merge less sensitive to data skew, and result is sorted

General Join Conditions (1/2)

» Equalities over several attributes
e.g., Rsid=S.sid AND R.rname=S.sname

For Index Nested Loop, build index on <R,sid, R.rname> (if R is
inner); or use existing indexes on Rsid or R.rname

For Sort-Merge and Hash Join, sort/partition on combination of
the two join columns

General Join Conditions (2/2)

» Inequality conditions
e.g., R.rrname < S.sname

For Index Nested Loop need clustered B+ tree index.

Range probes on inner; # matches likely to be much higher than for
equality joins

Hash Join, Sort Merge Join not applicable
Block Nested Loop quite likely to be the best join method here

Set Operations

» Intersection and cross-product special cases of join

» Union and Except similar

» Both hashing and sorting are possible

Similar in concept with projection

Union with Sorting

» Sort both relations (on combination of all attributes)
» Scan sorted relations and merge them

» Alternative: Merge runs from Pass O for both relations

Union with Hashing
» Partition R and S using hash function h

» For each S-partition, build in-memory hash table (using h2)

scan corresponding R-partition and add tuples to table while
discarding duplicates

Aggregate Operations (sum, avg, count,
min, max)

» Without grouping:
In general, requires scanning the relation

Given index whose search key includes all attributes in the
SELECT or WHERE clauses, can do index-only scan
Example: select avg(s.age) from sailors s

With index on age, just scan it for age values, take avg on the fly.
Select max(s.age) from sailors s where age < 50;

Still index-only
Select max(s.age) from sailors s where rating = 5;

Uses table scan unless there is an index on rating.

With index, need to cost table scan vs. many index lookups

Aggregate Operations
» With grouping:

Sort on group-by attributes, then scan relation and compute
aggregate for each group
Similar approach based on hashing on group-by attributes
Given tree index whose search key includes all attributes in SELECT,
WHERE and GROUP BY clauses, can do index-only scan

Ex: select age, count(*) from sailors

group by age
With B+-tree index on age

If group-by attributes form prefix of search key, can retrieve data
entries/tuples in group-by order

Impact of Buffering

» Repeated access patterns interact with buffer replacement
policy

Inner relation is scanned repeatedly in no-index Nested Loop
Joins

With enough buffer pages to hold inner, replacement policy

does not matter. Otherwise, MRU is best, LRU is worst
(sequential flooding)

What about Index Nested Loops? Sort-Merge Join!?

Summary

» Queries are composed of a few basic operators

The implementation of these operators can be carefully tuned

» Many alternative implementation techniques for each
operator

» No universally superior technique for most operators

» Must consider available alternatives for each operation in
a query and choose best one based on system statistics

