
Evaluation of Relational Operators:

Chap. 14

CS634
Lecture 11

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Architecture of a DBMS

Data

Disk Space Manager

Buffer Manager

A first course in database systems, 3rd ed, Ullman and Widom

Index/File/Record Manager

Execution Engine

Query Compiler

User
SQL Query

Query Plan (optimized)

Index and Record requests

Page Commands

Read/Write pages

Disk I/O

2

Relational Algebra

 Relational operators:

 Selection

 Projection

 Join Combines several relations using conditions

 Set-difference Union  Intersection 

 Aggregation and Grouping







Example Schema

 Similar to old schema; rname added

 Reserves:

 40 bytes long tuple, 100K records, 100 tuples per page, 1000 pages

 Sailors:

 50 bytes long tuple, 40K tuples, 80 tuples per page, 500 pages

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Selections with Simple Condition

 Case 1: No index, Unsorted data

 Do scan

 Case 2: No Index, Sorted Data

 Perform binary search on file (exact match or ranges)

 O(log M), M = number of pages in file

 Case 3: Index Available

 Is the index B+-Tree or Hash?

 Is it clustered or not?

)(R
attrOPval


Using an Index for Selections

 Cost depends on

 Number of qualifying tuples

 Clustering

 Cost has two components:

 Finding qualifying data entries (typically small)

 Retrieving records (could be large w/o clustering)

 Consider Reserves, assume 10% of tuples satisfy condition

 Result has 10K tuples, 100 pages

 With clustered index, cost is little more than 100 I/Os

 If unclustered, up to 10000 I/Os!

For Unclustered Indexes

 Important refinement:

1. Find qualifying data entries

2. Sort the rid’s of the data records to be retrieved

3. Fetch rids in order

 Ensures that each data page is looked at just once
 although number of I/Os still higher than with clustering

Example from Oracle: unclustered index on

K500K (added to table bench)

SQL> select k500k, rowid from bench where k500k>=400 and k500k<403;

K500K ROWID

---------- ------------------

400 AAA8A4AACAAADZqAAU

400 AAA8A4AACAAAGuHAAW k500k = 400: 2 data entrie

401 AAA8A4AACAAAFVzAAY

401 AAA8A4AACAAAGRVAAC k500k = 401: 2 data entries

402 AAA8A4AACAAAEiLAAA

402 AAA8A4AACAAAGWmAAB

402 AAA8A4AACAAAGkWAAW k500k=402:4 data entries

402 AAA8A4AACAAAHpnAAE

 RIDs for a certain key are in sorted order in index.

 With 3 keys, the whole set of RIDs is not in RID order.

 This is an index-only query, no need to access heap table.

Example from Oracle: unclustered index on

K500K

SQL> select kseq from bench250 where k500k>=400 and k500k<403;

KSEQ

432909

894121

1226517

…

247946329

248832188

249145270

249135567

1517 rows selected.

 Note that the RIDs were sorted before the KSEQ values were obtained from the heap table.

 For the smaller bench table, rid sort isn’t done for this query.

 Mysql also sorts RIDs before at least some lookups, starting with v. 5.6 (“MRR” Multi Range
Read, new feature)

 Rid sort works for RAID set too: each disk is given a sorted set of its

General Conditions Selections

 Condition may be composite

 In conjunctive form: easier to deal with

 At least one disjunction: less favorable case

 Disjunctive form

 Only one of the conditions, if met, qualifies tuple

 Even if some disjunct is optimized, the other(s) may require scan

 In general, this case dealt with using set union

 Most DBMS optimizers focus on conjunctive forms

Evaluating Conjunctive Forms (1/2)

 Find the most selective access path, retrieve tuples using it, and

apply any remaining terms that don’t match the index

 Most selective access path: An index or file scan that we estimate will

require the fewest page I/Os

 Example: day<8/9/94 AND bid=5 AND sid=3

 B+ tree index on day can be used; then, bid=5 and sid=3 must be

checked for each retrieved tuple

 Similarly, a hash index on <bid, sid> could be used; day<8/9/94 must

then be checked.

 Intersect rid’s

 If we have two or more matching indexes that use

Alternatives (2) or (3) for data entries:

 Get sets of rids of data records using each matching index

 Then intersect these sets of rids (we’ll discuss intersection soon!)

 Retrieve the records and apply any remaining terms

 Example: day<8/9/94 AND bid=5 AND sid=3

 B+ tree index on day and a hash index on sid, both using Alt. (2)

 Retrieve rids satisfying day<8/9/94 using the B+ tree, rids satisfying

sid=3 using the hash, intersect, retrieve records and check bid=5

Evaluating Conjunctive Forms (2/2)

Intersecting RIDs via Index JOIN

 Example: day<8/9/94 AND bid=5 AND sid=3

 B+ tree index on day and a hash index on sid, both using Alt. (2)

 Retrieve rids satisfying day<8/9/94 using the B+ tree, rids

satisfying sid=3 using the hash, intersect, retrieve records and

check bid=5

 Here the intersection is hopefully pipelined

 Another way to achieve this: Join the two indexes as files

 As tables, indexes are I1 = (rid, day) and I2 = (rid, sid)

 Join them: I1 where day<8/9/94 JOIN I2 where sid = 3

 Obtain (rid, day, sid) satisfying the two conditions and providing rids

 Pg. 446: Oracle does this.

Projection

 Remove unwanted attributes

 Eliminate any duplicate tuples produced (the hard part)

Projection with Sorting

 Modify Pass 0 of external sort to eliminate unwanted fields

 Produce runs of about 2B pages are produced

 Tuples in runs are smaller than input tuples

 Size ratio depends on number and size of fields that are dropped

 Modify merging passes to eliminate duplicates

 Thus, number of result tuples smaller than input

 Difference depends on number of duplicates

 Cost

 In Pass 0, read original relation (size M), write out same number of smaller

tuples

 In merging passes, fewer tuples written out in each pass. Using Reserves

example, 1000 input pages reduced to 250 in Pass 0 if size ratio is 0.25

Projection with Sorting

 Can be done without modifying sort:

1. Do attribute-dropping before feeding data (pipelined) to sort, end

up with T pages.

2. Sort result

3. Post-process by watching for new row-values as data is produced.

 Cost

 In step 1, read original relation (size M), write out same number of smaller

tuples

 In merging passes, same number of tuples written out in each pass. Use

normal sort cost for M pages, 2M * (# of passes)

Projection with Hashing

 Partitioning phase:

 Read R using one input buffer. For each tuple, discard unwanted

fields, apply hash function h1 to choose one of B-1output buffers

 Each output buffer is feeding a run on disk

 Result is B-1 partitions (of tuples with no unwanted fields), tuples

from different partitions guaranteed to be distinct

 See next slide for diagram

 Duplicate elimination phase: process runs from partitioning

phase. Each run forms a partition of the data

Hash Projection: Partitioning Phase

 Partition R using hash function h

 Duplicates will hash to the same partition

B main memory buffers DiskDisk

Original

Relation OUTPUT

2INPUT

1

hash
function

h
B-1

Partitions

1

2

B-1

. . .

Read in a partition of R, hash it using h2 (<> h!)

Discard duplicates as go along.

When partition is all read in, scan the hash table and write it out as
part of the projection result

Partitions

of R

Input buffer
for R

Hash table for partition

Ri (< B pages)

B main memory buffersDisk

Output

buffer

Disk

Projection Result

hash
fn

h2

h2

Hash Projection: Second Phase

or

Projection with Hashing

 Partitioning phase: ends up with partitions of data, each held in a

run on disk

 Duplicate elimination phase:

 For each partition, read it and build an in-memory hash table, using

hash h2 on all fields, while discarding duplicates

 If partition does not fit in memory, can apply hash-based projection

algorithm recursively to this partition

 Cost

 Read R, write out each tuple, but fewer fields, size T <= M. Result

read in next phase. Total i/o cost: M + 2T<= 3M, similar to sort if it

can be done in 2 passes and has pipelined output.

Discussion of Projection

 Sort-based approach is the standard

 better handling of skew and result is sorted.

 Hashing is more parallelizable

 If index on relation contains all wanted attributes in its

search key, do index-only scan

 Apply projection techniques to data entries (much smaller!)

 If an ordered (i.e., tree) index contains all wanted attributes

as prefix of search key, can do even better:

 Retrieve data entries in order (index-only scan)

 Discard unwanted fields, compare adjacent tuples to check for

duplicates

Equality Joins With One Join Column

 Most frequently occurring in practice

 We will consider more complex join conditions later

 Cost metric: number of I/Os

 Ignore output costs

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

Simple Nested Loops Join

 For each tuple in the outer relation R, we scan the entire inner

relation S.

 Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os

 Page-oriented Nested Loops join:

 For each page of R, get each page of S, and write out matching pairs

 Cost: M + M*N = 1000 + 1000*500

 If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result

Block Nested Loops Join

 one page input buffer for scanning the inner S

 one page as the output buffer

 remaining pages to hold ``block’’ of outer R

 For each matching tuple r in R-block, s in S-page, add <r, s> to result.

Then read next R-block, scan S, etc.

. . .

. . .

R & S
Block of R

(B-2 pages)

Input buffer for S Output buffer

. . .

Join Result

Examples of Block Nested Loops

 Cost: Scan of outer + #outer blocks * scan of inner
 #outer blocks =

 With Reserves (R) as outer, and 100 pages per block:
 Cost of scanning R is 1000 I/Os; a total of 10 blocks.

 Per block of R, we scan Sailors (S); 10*500 I/Os.

 Total 1000 + 10*500 = 6000 i/os.

 Need 101 buffer pages for this.

 With 100-page block of Sailors as outer:
 Cost of scanning S is 500 I/Os; a total of 5 blocks.

 Per block of S, we scan Reserves; 5*1000 I/Os.

 Total 500 + 5*1000 = 5500 i/os. Same ballpark as above.

 Compare these to page-oriented NLJ: 500,000 i/o or worse!

 SSD: is equally helped by this kind of “block” algorithm

 # /of pages of outer blocksize

Executing Joins: Index Nested Loops

 Cost = M + (M*pR) * (cost of finding matching S tuples)

 M = number of pages of R, pR = number of R tuples per page

 If relation has index on join attribute, make it inner relation

 For each outer tuple, cost of probing inner index is 1.2 for hash

index, 2-4 for B+, plus cost to retrieve matching S tuples

 Clustered index typically single I/O (Alt 2) or none (Alt. 1)

 Unclustered index 1 I/O per matching S tuple

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Example of Index Nested Loops (1/2)

Case 1: Hash-index (Alternative 2) on sid of Sailors

 Choose Sailors as inner relation

 Scan Reserves: 100K tuples, 1000 page I/Os

 For each Reserves tuple

 1.2 I/Os to get data entry in index

 1 I/O to get (the exactly one) matching Sailors tuple (primary key)

 Total: 221,000 I/Os

 Most of these i/o’s are random (within tablespace), so SSD

would be about 25x faster than HDD.

Example of Index Nested Loops (2/2)

Case 2: Hash-index (Alternative 2) on sid of Reserves

 Choose Reserves as inner

 Scan Sailors: 40K tuples, 500 page I/Os

 For each Sailors tuple

 1.2 I/Os to find index page with data entries

 Assuming uniform distribution, 2.5 matching records per sailor

 Cost of retrieving records is nothing (Alt 1 clustered), single I/O (Alt. 2
clustered index) or 2.5 I/Os (unclustered index)

 Total: 48,500 I/Os (clustered Alt 1), 88,500 I/Os (clustered Alt 2) or
148,500 I/Os (unclustered)

 Most of these i/o’s are random (within tablespace), so SSD would
be about 25x faster than HDD.

Sort-Merge Join

 Sort R and S on the join column (book assumes file-to-file

sort, no pipelining)

 Then scan them to do a merge on join column:

 Advance scan of R until current R-tuple >= current S tuple

 Then, advance scan of S until current S-tuple >= current R tuple

 Repeat until current R tuple = current S tuple

 At this point, all R tuples with same value in Ri (current R group)

and all S tuples with same value in Sj (current S group) match

 Output <r, s> for all pairs of such tuples

 May have to rescan part of one of the input files if have pages of duplicate

join keys vs. multiple matching join keys

 Resume scanning R and S

Sort-Merge Join Cost

 R is scanned once

 Each S group is scanned once per matching R tuple

 Multiple input-file scans per group needed only if S records with same
join attribute value span multiple pages

 Multiple such scans of an S group are likely to find needed pages in
buffer

 Cost: (assume B buffers)

 Sort(R) + Sort(S) + merge

 2M (1+log B-1(M/B)) + 2N (1+log B-1 (N/B)) + (M+N)

 The cost of scanning, M+N, could be M*N worst case (very unlikely!)

 In many cases, the join attribute is primary key in one of the tables,
which means no duplicates in one merge stream.

 Since both sort and merge use sequential i/o, SSD is “only” 5x faster
than HDD here.

2-Pass Sort-Merge Join

 With enough buffers, sort can be done in 2 passes

 First pass generates N/B sorted runs of B pages each

 If one page from each run + output buffer fits in memory, then merge
can be done in one pass; denote larger relation by L

 L/B + 1 <= B, holds if (approx) B > or L < B2

 One optimization of sort allows runs of 2B on average

 First pass generates N/2B sorted runs of 2B pages each

 Another optimization (pg, 462) runs the two sorts side-by-side and
pipelines their results into the final merge, avoiding intermediate files.
(But we’re not officially covering these optimizations)

 Merge can be combined with filtering of matching tuples

 The cost of sort-merge join becomes 3(M+N), assuming both M
and N are < B2 and the sorts-to-merge are pipelined.

L

Hash-Join: Partitioning Phase

 Partition both relations using hash function h

 R tuples in partition i will only match S tuples in partition I

 This is the similar to the partitioning phase of Projection by Hashing

B main memory buffers DiskDisk

Original

Relations OUTPUT

2INPUT

1

hash
function

h
B-1

Partitions

1

2

B-1

. . .

Read in a partition of R, hash it using h2 (<> h!)

Scan matching partition of S, search for matches.

Partitions

of R & S

Input buffer
for Si

Hash table for partition

Ri (k < B-1 pages)

B main memory buffersDisk

Output

buffer

Disk

Join Result

hash
fn

h2

h2

Hash-Join: Probing Phase

Note: A smaller table has smaller partitions, so each of its

partition hash tables will more easily fit in memory

Hash-Join Properties

 #partitions k <= B-1 because one buffer is needed for scanning

input

 Assuming uniformly sized partitions, and maximizing k:

 k= B-1, and M/(B-1) = size of one partition <= B-2, i.e., B >

 M is smaller of the two relations!

 So best to use the smaller table’s partitions for the second-phase hash

tables.

 i.e., we can take advantage of one table being small, unlike sort-merge.

 If the hash function does not partition uniformly, one or more

second-phase partitions may not fit in memory

 Can apply hash-join technique recursively to do the join of this R-

partition with corresponding S-partition.

M

Cost of Hash-Join

 In partitioning phase, read+write both R and S: 2(M+N)

 In matching phase, read both R and S: M+N

 (assumes hash tables fit in memory, B >)

 Note M can be size of the smaller table here.

 With sizes of 1000 and 500 pages, total is 4500 I/Os

 SSD: i/os are sequential, so “only” 5x faster.

M

Hash-Join vs Sort-Merge Join

 Given sufficient amount of memory both have a cost of
3(M+N) I/Os

 Assumes no pipelining into the whole operation, so both input
tables need full scan, M+N i/os.

 Ignores any cost of materializing the output of the operation.

 Hash Join superior on this count if relation sizes differ
greatly

 Hash Join shown to be highly parallelizable, unlike sort.

 Sort-Merge less sensitive to data skew, and result is sorted

General Join Conditions (1/2)

 Equalities over several attributes

 e.g., R.sid=S.sid AND R.rname=S.sname

 For Index Nested Loop, build index on <R,sid, R.rname> (if R is

inner); or use existing indexes on R.sid or R.rname

 For Sort-Merge and Hash Join, sort/partition on combination of

the two join columns

General Join Conditions (2/2)

 Inequality conditions

 e.g., R.rname < S.sname

 For Index Nested Loop need clustered B+ tree index.

 Range probes on inner; # matches likely to be much higher than for

equality joins

 Hash Join, Sort Merge Join not applicable

 Block Nested Loop quite likely to be the best join method here

Set Operations

 Intersection and cross-product special cases of join

 Union and Except similar

 Both hashing and sorting are possible

 Similar in concept with projection

Union with Sorting

 Sort both relations (on combination of all attributes)

 Scan sorted relations and merge them

 Alternative: Merge runs from Pass 0 for both relations

Union with Hashing

 Partition R and S using hash function h

 For each S-partition, build in-memory hash table (using h2)

 scan corresponding R-partition and add tuples to table while

discarding duplicates

Aggregate Operations (sum, avg, count,

min, max)

 Without grouping:

 In general, requires scanning the relation

 Given index whose search key includes all attributes in the

SELECT or WHERE clauses, can do index-only scan

 Example: select avg(s.age) from sailors s

 With index on age, just scan it for age values, take avg on the fly.

 Select max(s.age) from sailors s where age < 50;

 Still index-only

 Select max(s.age) from sailors s where rating = 5;

 Uses table scan unless there is an index on rating.

 With index, need to cost table scan vs. many index lookups

 With grouping:

 Sort on group-by attributes, then scan relation and compute

aggregate for each group

 Similar approach based on hashing on group-by attributes

 Given tree index whose search key includes all attributes in SELECT,

WHERE and GROUP BY clauses, can do index-only scan

 Ex: select age, count(*) from sailors

group by age

With B+-tree index on age

 If group-by attributes form prefix of search key, can retrieve data

entries/tuples in group-by order

Aggregate Operations Impact of Buffering

 Repeated access patterns interact with buffer replacement

policy

 Inner relation is scanned repeatedly in no-index Nested Loop

Joins

 With enough buffer pages to hold inner, replacement policy

does not matter. Otherwise, MRU is best, LRU is worst

(sequential flooding)

 What about Index Nested Loops? Sort-Merge Join?

Summary

 Queries are composed of a few basic operators

 The implementation of these operators can be carefully tuned

 Many alternative implementation techniques for each

operator

 No universally superior technique for most operators

 Must consider available alternatives for each operation in

a query and choose best one based on system statistics

