
Query Optimization, part 2: query
plans in practice

CS634
Lecture 13

Slides by E. O’Neil based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Working with the Oracle query optimizer

• First need to make sure stats are in place in the catalog (if tables
were just loaded, or indexes added)

• Analyze table on Oracle 12c is supported, but doesn’t collect
statistics for partitioned tables, run in parallel, etc.

• See notice in analyze doc

• To get better stats, we need to execute the following code (from
class 6)

SQL>exec dbms_stats.gather_table_stats(

‘SETQ_DB’, ‘BENCH’,cascade=>true);

• Here cascade means analyze its indexes too.

• To drop stats:

exec dbms_stats.delete_table_stats('setq_db', 'bench’);

https://docs.oracle.com/database/121/SQLRF/statements_4005.htm#SQLRF01105
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_4005.htm

Bench table

• 1M rows, 240 bytes each, so 240MB table data (30K pages)

• Data is in a heap table
• Recall that Oracle only offers clustered index via “IOT” index-organized table.

• Column names show their cardinality:
• k4 means 4 different values, 1,2,3,4

• k100K means 100k different values 1, 2, …, 99999, 100000

• B-tree indexes on kseq, k4, k100, k1k, k100k, k500k columns

• No index on k5, k25, k40, k40k, k250k columns

Seeing the results of gathering stats
SQL> SELECT column_name, num_distinct, num_buckets, histogram

FROM ALL_TAB_COL_STATISTICS where table_name='BENCH‘ order by num_distinct;

COLUMN_NAM NUM_DISTINCT NUM_BUCKETS HISTOGRAM

---------- ------------ ----------- ---------------

K2 2 1 NONE

K4 4 1 NONE indexed

K5 5 5 FREQUENCY

K10 10 1 NONE indexed

K25 25 1 NONE

K100 100 100 FREQUENCY indexed

K1K 1000 1 NONE

K10K 10000 1 NONE indexed

K40K 40348 1 NONE

K100K 100816 1 NONE indexed

K250K 248288 1 NONE

K500K 439200 1 NONE indexed

KSEQ 1000000 1 NONE indexed

Oracle figures that the default RF of 1/num_distinct will be good enough for k10k and up

Simple plan example, indexed column k500
SQL> alter session set current_schema = setq_db;

SQL> explain plan for select max(s1) from bench where k500k=2;

SQL> select * from table(dbms_xplan.display());

| Id | Operation | Name | Rows | Bytes

| 0 | SELECT STATEMENT | | 1 | 14 |

| 1 | SORT AGGREGATE | | 1 | 14 |

| 2 | TABLE ACCESS BY INDEX ROWID| BENCH | 2 | 28 |

|* 3 | INDEX RANGE SCAN | K500KIN | 2 | |

--

Predicate Information (identified by operation id):

3 - access("K500K"=2)

• K500K index has 2 rows for each key

• Table access by those two ROWIDs extracts 28 bytes (s1 value): 2 rows of 14 bytes each

• These are aggregated and one value returned

• Same plan for k100k, k10k, but not k100…

Simple plan, indexed k100 column:

SQL> explain plan for select max(s1) from bench where k100=2;

SQL> select * from table(dbms_xplan.display());

| Id | Operation | Name | Rows | Bytes | Cost…

--

| 0 | SELECT STATEMENT | | 1 | 12 |

| 1 | SORT AGGREGATE | | 1 | 12 |

|* 2 | TABLE ACCESS FULL| BENCH | 10000 | 117K|

--

Predicate Information (identified by operation id):

2 - filter("K100"=2)

• Here RF=1/100, so about 10,000 rows are produced by the filtered table scan,
and each needs the s1 value, 12 bytes, so 120KB of data.

• Oracle has ignored the K100 index, preferring to do a table scan (30,000 pages)
rather than do 10,000 index probes and rid lookups. Let’s see why…

Simple plan, k100 case

select max(s1) from bench where k100=2;

• Cost of Oracle’s plan (with known histograms): read entire table, about
30,000 i/os.

• Cost of index-driven plan:
• Here RF=1/100, so about 10,000 rows are found in the index. Maybe 100 i/os to index.

• Each needs the s1 value, so the ROWID is used to access the table. This takes 10,000
index probes, so about 10,000 i/os (assuming buffering of upper levels of the index.)

• The difference here: sequential vs. random i/o
• Plan 1: table scan, 30,000 sequential i/os

• Plan 2: use index, 10,000 random accesses

• But sequential i/o uses multi-block i/o, can be 10-25x faster.

• That’s assuming HDD. On SSD, use the index.

Easier way to see plans:

set autotrace on explain statistics

• Or just set autotrace on exp stat

• Also set timing on

• Also set line 130 to avoid wrapping

• Then just select …

• After this returns, you see the explain plan, plus actual statistics on
the query

• The explain plan is not guaranteed to be the exact plan used

• Note: to set string column output format:

SQL> column column_name format a10

column column_name format a

column column_name format a

Example with set autotrace …, set timing…
SQL> select max(s1) from bench where k500k=2;

MAX(S1)

12345678

Elapsed: 00:00:00.03

| Id | Operation | Name | Rows | Bytes (also Cost, Time)

| 0 | SELECT STATEMENT | | 1 | 14 |

| 1 | SORT AGGREGATE | | 1 | 14 |

| 2 | TABLE ACCESS BY INDEX ROWID| BENCH | 2 | 28 |

|* 3 | INDEX RANGE SCAN | K500KIN | 2 | |

--

Predicate Information (identified by operation id):

3 - access("K500K"=2)

Statistics

--

1 recursive calls

0 db block gets

5 consistent gets

5 physical reads unfortunately, physical writes are not reported here

…

Join Example
(with index on kseq)

SELECT max(b1.s2)
FROM bench b1, bench b2
WHERE b1.k40k=b2.kseq AND b2.k5=2;

b1 b2

b1.k40k=b2.kseq

b2.k5=2

b1.s2

b2

b1.s2

b1.k40k=b2.kseq

b1
b2.k5=2

Join Example
(with indexes on k40k and kseq)

SELECT max(b1.s2)
FROM bench b1, bench b2
WHERE b1.k40k=b2.kseq AND b2.k5=2;

b2

b1.s2

b1.k40k=b2.kseq

b1b2.k5=2

b2

b1.s2

b1.k40k=b2.kseq

b1
b2.k5=2

Left-deep tree (for NLJ)

SELECT max(b1.s2)
FROM bench b1, bench b2
WHERE b1.k40k=b2.kseq AND b2.k5=2;

Oracle uses Hash Join:

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 34 | | 17998 (1)| 00:00:01 |

| 1 | SORT AGGREGATE | | 1 | 34 | | | |

|* 2 | HASH JOIN | | 1000K| 32M| 3920K| 17999 (1)| 00:00:01 |

|* 3 | TABLE ACCESS FULL| BENCH | 200K| 1567K| | 8002 (1)| 00:00:01 |

| 4 | TABLE ACCESS FULL| BENCH | 1000K| 24M| | 8003 (1)| 00:00:01 |

2 - access("B1"."K40K"="B2"."KSEQ")

3 - filter("B2"."K5"=2)

Line 3: 100000/5 = 200K rows, each with kseq, say 8 bytes, = 1600K = 1.6M bytes, OK

Line 4: all rows, drop all cols except k40k and s2, say 20 bytes = 20M bytes, OK

• This hash table is using the temp tablespace instead of dedicated memory, but its pages
will be in memory. Here the smaller HT holds 1.6MB data, uses 3.9MB space.

• Recall the rule of thumb that a hash table should be at least twice the size of the data in
it.

Hash Join Cost Analysis, case of in-memory HT,
no partitioning (for small tables)

• Hash Join: 1M rows (24MB) from b1, 200K rows (1.5MB)
from selection on b2

• So build hash table from b2, should fit in memory
(apparently 3.9MB). If not, use partitioning.

• Hash the 1M rows of b1 and output to pipeline

• i/o Cost: read bench twice (once as b1, once as b2),
about 60,000 i/os. Less if table fits in memory (our case,
so only read it once)

• Mysql can’t do hash join, MariaDB can

b2

b1.s2

b1.k40k=b2.kseq

b1
b2.k5=2

Hash Join Cost Analysis, by textbook algorithm

• Hash Join: 1M rows (24MB) from b1, 200K rows (1.5MB)
from selection on b2 (see explain plan, slide before last)

• Book assumes partitioning needed first. Suppose only
1MB of memory available.

• So read and write all data of both tables into partitions,
say 100 partitions (using 800KB of buffers, about 1MB)

• For each partition, build hash table from b2, should
fit in memory (about .01(3.8M) = 38KB)

• Hash the 10K rows of b1 part., output to pipeline

• i/o Cost: read both tables, about 60,000 i/os. Write and
read incoming tables to HJ: 24MB=3K blocks, 1.5MB =
.2K blocks, total 3200 writes, 3200 reads, 6400 i/os.

• Cost = 66,400 i/os.

• Cost = M + N + 2(MHJ+NHJ), where MHJ and NHJ are the
#pages coming into the HJ operator after selections are
made and unused columns are dropped. The book
ignores this effect, simplifying to 3(M+N).

b2

b1.s2

b1.k40k=b2.kseq

b1
b2.k5=2

Hash Join Optimization with Oracle (“hybrid hash
join” of pg. 465)

• Oracle partitions all b2 (smaller side) data and builds
one or more partition’s HT in memory in first pass, while
writing other partitions to disk.

• While reading b1 side data, does join with in-memory
b2 partition(s), writes out other b1 partitions for later
processing (the ones with HTs not yet available)

• Works on processing written-out b1-partitions with next
set of in-memory HTs of b2 data, etc.

• i/o Cost: read both tables, about 60,000 i/os. Write and
read parts of smaller and larger tables.

• For small enough tables, no partition writing at all.

• This way, cost of HJ doesn’t jump up as join size crosses
needs-partitioning boundary.

b2

b1.s2

b1.k40k=b2.kseq

b1
b2.k5=2

Nested Loops Cost Analysis, b2 outer

• Indexed NL Join? Not possible, no index on
k40k.

• Could consider blocked NLJ.

b2

b1.s2

b1.k40k=b2.kseq

b1b2.k5=2

Nested Loops Cost Analysis, b1 outer

• Indexed NL Join: 1M rows in b2 with index on
kseq, 1M rows (20MB) in b1

• Cost: 1 match for each k40k value, 1M index
probes, but to only to the first 4% of the table
(b2.kseq < 40K), so 40K i/os assuming decent
buffering, plus reading b1 table (about 30,000
i/os)

• Cost = 70,000, less if table fits in memory.

• Compare to HJ costs: 60,000 (in-mem HT),
66,400 (partitioning, less if hybrid)

• HJ also benefits from using sequential i/o:
• NLJ: 30,000 seq + 40,000 random i/os

• HJ: 60,000-66,400 seq (much faster for HDD)

b1 b2

b1.k40k=b2.kseq

b2.k5=2

b1.s2

Paged Nested Loops Cost Analysis

• Paged NL Join: 200K rows (1.5 MB = 190
pages) from selection

• Then read one page of left-side input, read
all of b1, then another page, read all of b1.

• Cost: read b1 190 times, b2 once, =
191*30,000 i/os. No good.

b2

b1.s2

b1.k40k=b2.kseq

b1b2.k5=2

Blocked Nested Loops Cost Analysis

• Blocked NL Join: 200K rows (1.5MB) from
selection, 1M rows (240MB) in b1

• Cost: assume 1MB memory available, so
block = 1MB.

• Then read .75MB (half) of left-side input,
read all of b1, then another .75MB, read
all of b1.

• Cost: read b1 twice, b2 once, = 90,000 seq
i/os.

• Only 60,000 if can use 2MB memory, and
that’s the same as hash join.

• Mysql v 5.6 can use this approach.

b2

b1.s2

b1.k40k=b2.kseq

b1b2.k5=2

Hash Join Optimization

Since hash joins are common plans used by Oracle, how can we help
make them fast?

• Raise pga_aggregate_target to maybe 10% of server memory (exact
commands depend on Oracle version)

• Since the hash join speed depends on the size of the tables, be
sparing with your select list: avoid select * from …

• Don’t worry about indexes on the join condition columns: they won’t
be used!

• Of course, if you think NLJ is possible, do use these indexes.

• Add indexes to help with selective single-table predicates: they will
be used (on either or both sides) and greatly reduce the size of the
join.

• Be more selective with the single-table predicates if possible.
• Ex: instead of looking at all employees, look at one department’s.

What about mysql?

• Mysql v 5.7 (our case on pe07) only joins using nested loops join,
including blocked nested loops.

• MariaDB 10.1 (our case on cloud sites) uses hash join too

• Mysql has “explain”, but it is not as complete or easy to understand
as Oracle’s.

• Mysql v 5.7 has new JSON-format plans for explain.

Mysql EXPLAIN

mysql> explain select max(s1) from bench where k500k=2 and k4=2;

explain select max(s1) from bench where k500k=2 and k4=2

+----+-------------+-------+------+---------------+---------+---------+-|

id | select_type | table | type | possible_keys | key | key_len | …|

+----+-------------+-------+------+---------------+---------+---------+-|

1 | SIMPLE | bench | ref | k500kin,k4in | k500kin | 4 | |

+----+-------------+-------+------+---------------+---------+---------+--+

1 row in set (0.00 sec)

• In this case, we see mysql chooses the one better key

Mysql can merge indexes

mysql> explain select max(s1) from bench where k500k=2 and k10k=2;

explain select max(s1) from bench where k500k=2 and k10k=2

+----+-------------+-------+-------------+----------------+----------------+---------+------+

| id | select_type | table | type | possible_keys | key | key_len | ref |

rows | Extra |

+----+-------------+-------+-------------+----------------+----------------+---------+------+-

| 1 | SIMPLE | bench | index_merge | k500kin,k10kin | k500kin,k10kin | 4,4 | NULL |

1 | Using intersect(k500kin,k10kin); Using where |

+----+-------------+-------+-------------+----------------+----------------+---------+------+

• Shows index merge of two indexes.

• Though not really worth it: only 2 rows satisfy k500k=2

• This was mysql v5.6. Mysql v5.7 uses only the one index, a better plan

Mysql and joins

• Mysql only uses Nested Loop Joins, and left-deep plans.

• Thus it is sufficient to know the order of the joins and we know the
plan tree.

• The explain output lists one line per table, leftmost table first.

Yelp_db core tables

• Review table: the big table in the middle
• 4.5M rows in both DBs, but different storage of review text/clob (the actual texts

of the submitted reviews, up to 64KB in length)
• Oracle: 6.7GB data (840K 8KB pgs) in Oracle

• But 1.6 GB of this is in “LOB storage”, separate from main table
• So main table has 5.1GB data (640K pgs) 1100 bytes/row (incl. review texts < 4KB)

• Mysql: main table has 3.7GB data (230K 16KB pgs), 820 bytes/row
• text column data separately stored (all of it, not just bigger review texts)

• Index on PK = id, clustered only in mysql.
• Indexes on 2 FK cols: business_id and user_id

• Business table
• 150K rows, 22MB data (1400 16KB pgs), so 140 bytes/row
• Index on PK = id, clustered only in mysql.
• Each business has 30 reviews by simple division: 4.5M/150K = 30

• Yuser table
• 1M rows, 150MB data (9400 pgs), so 150 bytes/row on ave.
• Index on PK = id, clustered only in mysql.

• All indexes are B+-tree indexes

Our Yelp queries: query 1

SELECT COUNT(*) FROM yelp_db.business B, yelp_db.review R

WHERE B.id = R.business_id AND R.stars = 5 AND B.state = 'NV';

• Oracle 12c on dbs3: (5.5s starting from empty buffer cache)

• Mysql 5.7 on pe07:

• These second runs are using cached data. How does Oracle win by
factor of 17?

First run Second run

COUNT(*)

723579

Elapsed: 00:00:03.71

COUNT(*)

723579

Elapsed: 00:00:02.08

+----------+

| COUNT(*) |

+----------+

| 725915 |

+----------+

1 row in set (36.45 sec)

+----------+

| COUNT(*) |

+----------+

| 725915 |

+----------+

1 row in set (36.48 sec)

Nested Loops Cost Analysis, business outer

• Indexed NL Join: 4.5M rows in review with index on
business_id, 150K rows in business, 30K in ‘NV’ (RF
= 0.2)

• Cost: 30K index probes, each matching 30 reviews,
then follow rid, plus reading outer table (about
1400 i/os using 16KB pages, 2800 for 8KB pgs)

• Cost = 30*30K + 1400/2800 = 900K i/os, unless
table fits in memory (and it does, in effect)

• We will see this is mysql’s choice.

• Note: 900K row accesses hits almost all pages in
the mysql table, since it has only 230K pages.

business

review

b.Id = r.business_id

r.stars=5

b.state=‘NV’

count

Hash Join Cost Analysis, case of in-memory HT,
no partitioning (for small smaller table)

• Hash Join: 0.8MB from selection on business,
50MB from selection on review

• So build hash table from business, should fit in
memory. (If not, use partitioning.)

• Hash the rows of review and output to
pipeline

• i/o Cost: read both tables, about 230K 16KB
i/os. , 643K 8KB sequential i/os (Oracle tables).

• We will see this is Oracle’s choice

• Mysql can’t do hash join, MariaDB can

business review

b.Id = r.business_id

r.stars=5 b.state=‘NV’

count

Oracle plan: Hash Join

SELECT COUNT(*) FROM yelp_db.business B, yelp_db.review R

WHERE B.id = R.business_id AND R.stars = 5 AND B.state = 'NV';

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

--|

| 0 | SELECT STATEMENT | | 1 | 53 | 229K (1) |

| 1 | SORT AGGREGATE | | 1 | 53 | |

|* 2 | HASH JOIN | | 390K| 19M| 229K (1)|

|* 3 | TABLE ACCESS FULL| BUSINESS | 30571 | 806K| 752 (1)|

|* 4 | TABLE ACCESS FULL| REVIEW | 1982K| 49M| 228K (1)|

2 - access("B"."ID"="R"."BUSINESS_ID")

3 - filter("B"."STATE"='NV')

4 - filter("R"."STARS"=5)

Mysql plan: Indexed NLJ, business outer
mysql> explain SELECT COUNT(*) FROM yelp_db.business B,
yelp_db.review R WHERE B.id = R.business_id AND R.stars =
5 AND B.state = 'NV';

+----+-------------+-------+------------+------+-----------

| id | select_type | table | partitions | type

| possible_keys | key | key_len

| ref | rows | filtered | Extra |

+----+-------------+-------+------------+------+-----------

| 1 | SIMPLE | B | NULL | ALL

| PRIMARY | NULL | NULL

| NULL | 155160 | 10.00 | Using where |

| 1 | SIMPLE | R | NULL | ref

|fk_reviews_business1_idx | fk_reviews_business1_idx | 68
|yelp_db.B.id | 36 | 10.00 | Using where |

+----+-------------+-------+------------+------+-----------

• This report shows mysql does an indexed NLJ with business (B) the outer
table (the first listed table here).

Oracle Hash Join wins over Mysql NLJ

• Oracle chooses 840K seq. i/o for HJ over 900K random i/os
for NLJ here, clear winner because seq. i/o is so much faster.

• Recall we earlier estimated seq. i/o is up to 25x faster on HDD even if data is
trapped in a tablespace for random i/o.

• Of course dbs3 has much faster disk system than pe07

• Similar story for the other two queries: HJ vs. NLJ, HJ wins.

• We don’t really know why Oracle is 17x faster using cached
data, since no disk i/o is happening in that case.

• Streaming data in memory is faster than random access in memory, one
effect (more CPU cache traffic with random access)

• The systems have similar CPUs, though pe07 has 2 processors vs. 1 for dbs3

• pe07 has twice as much memory as dbs3 (128GB vs 64GB)

Oracle chooses a NLJ for state=‘WI’
WI has only 4190 businesses, compared to 30K for NV

SQL> explain plan for SELECT COUNT(*) FROM yelp_db.business B, yelp_db.review R
WHERE B.id = R.business_id AND R.stars = 5 AND B.state = ‘WI';

| Id | Operation | Name | Rows | Bytes

--

| 0 | SELECT STATEMENT | | 1 | 53 |

| 1 | SORT AGGREGATE | | 1 | 53 |

| 2 | NESTED LOOPS | | 53467 | 2767K|

| 3 | NESTED LOOPS | | 125K | 2767K|

|* 4 | TABLE ACCESS FULL | BUSINESS | 4190 | 110K|

|* 5 | INDEX RANGE SCAN | FK_REVIEWS_BUSINESS1_IDX | 30 | |

|* 6 | TABLE ACCESS BY INDEX ROWID| REVIEW | 13 | 338 |

--

Predicate Information (identified by operation id):

4 - filter("B"."STATE"='WI')

5 - access("B"."ID"="R"."BUSINESS_ID")

6 - filter("R"."STARS"=5)

Nested Loops Cost Analysis, state=‘WI’
(Oracle uses NLJ, twice)

• Indexed NL Join: 4.5M rows in review with
index on business_id, 150K rows in business, 4K
in ‘WI’ (RF = 0.06)

• Cost: 4K index probes in first join (which find all
30 matches together) then follow r1.rids
(4.1K*30=125K est., actually 100K) in second
join, check stars=5, plus reading outer table
(about 1400 i/os using 16KB pages, 2800 for
8KB pgs)

• Cost = 31*4K + 1400/2800 = 125K i/os

• Cost of HJ = 640K sequential i/os, 5x this NLJ
cost, but we expect seq. i/o to be much faster.

Note: Since v 11g, the rid access to review is
using “vector i/o”, where multiple requests are
sent at once to the disk system (after sort of rids),
causing it to be much faster than normal random
i/o.

business

fk_reviews_business1_idx

b.Id = r.business_id

b.state=‘WI’

count

review

r.rid = r1.rid

Oracle NLJ vs mysql NLJ: state=‘WI’ query

Oracle: using two NLJs as shown on last slide, cost = 125K i/os

• First, after “alter system flush buffer_cache;” to clear buffer cache
• Elapsed: 00:00:01.84 (only 0.015 ms/io, so not normal “random i/o”)

• Second: table data should be in buffer cache
• Elapsed: 00:00:00.35

Mysql time: using single NLJ as shown earlier (cost = 4K*30 = 120K
i/os)

• First time (but some data in OS buffers)
• 1 row in set (2.70 sec)

• Second time: table data should be in buffer cache
• 1 row in set (2.69 sec)

Oracle Bitmap Indexes

create table emps (

eid char(5) not null primary key,
ename varchar(16),
mgrid char(5) references emps,
gender char(1), salarycat smallint, dept char(5));

create bitmap index genderx on usemps(gender); (2
values, 'M' &'F')

create bitmap index salx on usemps(salrycat); (10
values, 1-10)

create bitmap index deptx on usemps(dept); (12 vals, 5
char: 'ACCNT')

• Best for low-cardinality columns
• Bitmap for gender=‘M’: 0010111…
• Bitmap for gender=‘F’: 1101000…

Bitmap indexes, cont.

• Even with a null-value bitmap, only 3 bits/row for gender

• ORACLE uses compression for low-density bitmaps, so they don't
waste space.

• Note: Call a bitmap "verbatim" if not compressed.

• Fast AND and OR of verbatim bitmaps speeds queries. Idea is:
overlay unsigned int array on bitmap, loop through two arrays
ANDing array (& in C), and producing result of AND of predicates.
Parallelism speeds things (64 bits at a time).

• But for updates, bitmaps can cause a slowdown when the bitmaps
are compressed (need to be decompressed, may recompress
differently). Don't use bitmap indexes if have frequent updates (OLTP
situation).

Query plan with bitmap indexes

EXPLAIN PLAN FOR SELECT * FROM t WHERE c1 = 2 AND c2 <>
6 OR c3 BETWEEN 10 AND 20;

SELECT STATEMENT

TABLE ACCESS T BY INDEX ROWID

BITMAP CONVERSION TO ROWID

BITMAP OR

BITMAP MINUS

BITMAP MINUS

BITMAP INDEX C1_IND SINGLE VALUE

BITMAP INDEX C2_IND SINGLE VALUE

BITMAP INDEX C2_IND SINGLE VALUE

BITMAP MERGE

BITMAP INDEX C3_IND RANGE SCAN

Bitmap plan discussion

• In this example, the predicate c1=2 yields a bitmap from which a
subtraction can take place.

• From this bitmap, the bits in the bitmap for c2 = 6 are subtracted.

• Also, the bits in the bitmap for c2 IS NULL are subtracted, explaining
why there are two MINUS row sources in the plan.

• The NULL subtraction is necessary for semantic correctness unless
the column has a NOT NULL constraint.

• The TO ROWIDS operation is used to generate the ROWIDs that are
necessary for the table access.

Scaling up

• Our experiments are using a single disk, so parallelism is not
important.

• Serious databases use RAID, so multiple disks are working together,
more or less like one faster disk.

• Huge databases use partitioning and query plans where work on
different partitions proceeds in parallel.

• Will return to this when studying data warehousing.

