
Transaction Management:

Concurrency Control, part 2

CS634
Class 16

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

Locking for B+ Trees

 Naïve solution

 Ignore tree structure, just lock its pages following 2PL

 Very poor performance!

 Root node (and many higher level nodes) become bottlenecks

 Every tree access begins at the root!

 Not needed anyway!

 Only row data needs 2PL (contents of tree)

 Tree structure also needs protection from concurrent access

 But only like other shared data of the server program

 Note this modern view is not covered in book

 See Graefe, A Survey of B-tree locking techniques (2010)

 B-tree locking is a huge challenge!

http://www.hpl.hp.com/techreports/2010/HPL-2010-9.pdf

Locking vs. Latching
 To protect shared data in memory, multithreaded programs use

mutex (semaphores) AKA latches, sometimes “locks” (confusing!)
 API: enter_section/leave_section, or lock/unlock

 Every Java object contains a mutex, for convenience of Java programming:
underlies synchronized methods

 Database people call mutexes and related mechanisms “latches”

 Need background in multi-threaded programming to understand this
topic fully

 The tree structure needs mutex/latch protection

 Example: split node. No row data is changed, just the details in pages
in the buffer pool. No i/o is needed (can’t hold a latch across disk i/o
without ruining performance.)

 Latches can be provided by the same lock manager as does 2PL
locking, and can have share and exclusive types like locks.

 In these slides, will use “lock” in quotes to mean non-2PL lock/latch
to make it look somewhat like the book’s discussion…

Locking for B+ Trees (contd.)

 Searches

 Higher levels only direct searches for leaf pages

 Insertions

 Node on a path from root to modified leaf must be “locked” in

X mode only if a split can propagate up to it

 Similar point holds for deletions

 There are efficient locking protocols that keep the B-tree

healthy under concurrent access, and support 2PL on

rows

A Simple Tree Locking Algorithm:
(“lock” here is really a latch on tree structure)

 Search
 Start at root and descend: “crabbing down the tree”

 repeatedly, get S “lock” for child then “unlock” parent, end up with S “lock” on
leaf page

 Get 2PL S lock on row, provide row pointer to caller

 Later, caller is done with reading row, arranges release of S “lock”

 Insert/Delete
 Start at root and descend, crabbing, obtaining X “locks” as needed

 Once child is “locked”, check if it is safe

 If child is safe, release “lock” on parent, leaving X “lock” on child

 Get 2PL X lock on place for new row/old row, insert/delete row, release “lock”

 Safe node: not about to split or coalesce
 Inserts: Node is not full

 Deletes: Node is not half-empty

 When control gets back to QP, transaction only has 2PL locks on rows.
Only 2PL locks are long-term across multiple DB actions.

Difference from text

 The algorithm actions described in the text are valid, for

example, crabbing down the tree, worrying about full

nodes, etc.

 What’s different is that the locks for index nodes are

shorter lived than described in the text: only 2PL locks on

rows are kept until end of transaction, not any locks on

index nodes.

 Note that text uses locks and releases them before

commit, a sign that they are not actually Strict 2PL locks.

 Note the admission on pg. 564 that the text’s coverage

on this topic is “not state of the art”. Graefe’s paper is.

An Example from pg. 563

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:

Search 38*

Insert 45*

Insert 25*

Delete 38*

23

Insert 45 case (corrected 4/12)

Crab down tree getting X “locks” (really latches)

“Xlock” A

“Xlock” B

B is safe, so “unXlock” A

“Xlock” C

C is unsafe, so can’t “unXlock” B now

“Xlock” E (its page of rows is in buffer,)

E is safe, so “unXlock” C, and B too

Xlock E (real 2PL page lock)

“UnXLock” E

Return to QP with 2PL Xlock on page, and pointer to it in pinned buffer.

QP will unpin when done with edits to page

A Variation on Algorithms

 Search

 As before

 Insert/Delete

 Set “locks” as if for search, get to leaf, and set 2PL X lock on

leaf

 If leaf is not safe, release all “locks”, and restart using previous

Insert/Delete protocol

 This is what happens if the search down the tree happens on a

page that is not in buffer—don’t want to hold a latch across a

disk i/o (takes too long)

Multiple-Granularity Locks

 Hard to decide what granularity to lock

 tuples vs. pages vs. files

 Shouldn’t have to decide!

 Data containers are nested:

Tuples

Files

Pages

Database

contains

New Lock Modes, Protocol

 Allow transactions to lock at each level, but with a

special protocol using new intention locks

• Before locking an item, must set

intention locks on ancestors

• For unlock, go from specific to

general (i.e., bottom-up).

• SIX mode: Like S & IX at the

same time.

-- IS IX

--

IS

IX







 



S X





S

X

 







 



Multiple Granularity Lock Protocol

 Each transaction starts from the root of the hierarchy

 To get S or IS lock on a node, must hold IS or IX on

parent node

 To get X or IX or SIX on a node, must hold IX or SIX on

parent node.

 Must release locks in bottom-up order

Snapshot Isolation (SI)

 Multiversion Concurrency Control Mechanism (MVCC)

 This means the database holds more than one value for a data item at the
same time

 Used in PostgreSQL (open source), Oracle, others

 Readers never conflict with writers unlike traditional DBMS (e.g., IBM
DB2)! Read-only transactions run fast.

 Does not guarantee “real” serializability

 But: ANSI “serializability” fulfilled, i.e., avoids anomalies in the ANSI table

 Found in use at Microsoft in 1993, published as example of MVCC

Snapshot Isolation - Basic Idea:

 Every transaction reads from its own snapshot (copy) of

the database (will be created when the transaction starts,

or reconstructed from the undo log).

 Writes are collected into a writeset (WS), not visible to

concurrent transactions.

 Two transactions are considered to be concurrent if one

starts (takes a snapshot) while the other is in progress.

First Committer Wins Rule of SI

 At the commit time of a transaction its WS is compared

to those of concurrent committed transactions.

 If there is no conflict (overlapping), then the WS can be

applied to stable storage and is visible to transactions that

begin afterwards.

 However, if there is a conflict with the WS of a

concurrent, already committed transaction, then the

transaction must be aborted.

 That’s the “First Committer Wins Rule“

 Actually Oracle uses first updater wins, basically same

idea, but doesn’t require separate WS

Write Skew Anomaly of SI

 In MVCC, data items need subscripts to say which version

is being considered

 Zero version: original database value

 T1 writes new value of X, X1

 T2 writes new value of Y, Y2

 Write skew anomaly schedule:

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 Writesets WS(T1) = {X}, WS(T2) = {Y}, do not overlap,

so both commit.

 So what’s wrong—where’s the anomaly?

Write Skew Anomaly of SI

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 Scenario:

 X = husband’s balance, orig 100,

 Y = wife’s balance, orig 100.

 Bank allows withdrawals up to combined balance

 Rule: X + Y >= 0

 Both withdraw 150, thinking OK, end up with -50 and -50.

 Easy to make this happen in Oracle at “Serializable”

isolation.

 See conflicts, cycle in PG, can’t happen with full 2PL

 Can happen with RC/locking

How can an Oracle app handle this?

 If X+Y >= 0 is needed as a constraint, it can be

“materialized” as sum in another column value.

 Old program: R(X)R(X-spouse)W(X)C

 New program: R(X)R(X-spouse) W(sum) W(X)C

 So schedule will have W(sum) in both transactions, and

sum will be in both Writesets, so second committer

aborts.

 Or, after the W(X), run a query for the sum and abort if

it’s negative.

Oracle, Postgres: new failure to handle

 Recall deadlock-abort handling: retry the aborted

transaction

 With SI, get "can't serialize access“

 ORA-08177: can't serialize access for this transaction

 Means another transaction won for a contended write

 App handles this error like deadlock-abort: just retry

transaction, up to a few times

 This only happens when you set serializable isolation level

Other anomalies under SI

 Oldest sailors example

 Both concurrent transactions see original sailor data in

snapshots, plus own updates

 Updates are on different rows, so both commit

 Neither sees the other’s update

 So not serializable: one should see one update, other should

see two updates.

 Task Registry example:

 Both concurrent transactions see original state with 6 hours

available for Joe

 Both insert new task for Joe

 Inserts involve different rows, so both commit

Fixing the task registry

 Following the idea of the simple write skew, we can materialize

the constraint “workhours <= 8”

 Add a workhours column to worker table

 Old program:

 if sum(hours-for-x)+newhours<=8

 insert new task

 New program:

 if workhours-for-x + newhours <=8

 { update worker set workhours = workhours + newhours…

 insert new task

 }

Fixing the Oldest sailor example

 If the oldest sailor is important to the app, materialize it!

Create table oldestsailor (rating int primary key, sid int)

Oracle Read Committed Isolation

 READ COMMITTED is the default isolation level for both

Oracle and PostgreSQL.

 A new snapshot is taken for every issued SQL statement

(every statement sees the latest committed values).

 If a transaction T2 running in READ COMMITTED mode

tries to update a row which was already updated by a

concurrent transaction T1, then T2 gets blocked until T1

has either committed or aborted

 Nearly same as 2PL/RC, though all reads occur effectively

at the same time for the statement.

Transaction Management:

Crash Recovery

CS634

Slides based on “Database Management Systems” 3rd ed, Ramakrishnan and Gehrke

ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in
consistent state

3. Isolation: each transaction is protected from effects of other
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will
persist

 Conversely, if a transaction aborts/is aborted, there are no effects

26

Recovery Manager

 Crash recovery

 Ensure that atomicity is preserved if the system crashes while one

or more transactions are still incomplete

 Main idea is to keep a log of operations; every action is logged

before its page updates reach disk (Write-Ahead Log or WAL)

 The Recovery Manager guarantees Atomicity & Durability

27

Motivation

 Atomicity:

 Transactions may abort – must rollback their actions

 Durability:

 What if DBMS stops running – e.g., power failure?

crash!Desired Behavior after system
restarts:

– T1, T2 & T3 should be
durable

– T4 & T5 should be
aborted (effects not seen)

T1
T2
T3
T4
T5

Assumptions

 Concurrency control is in effect

 Strict 2PL

 Updates are happening “in place”

 Data overwritten on (deleted from) the disk

 A simple scheme is needed

 A protocol that is too complex is difficult to implement

 Performance is also an important issue

