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Locking for B+ Trees

 Naïve solution

 Ignore tree structure, just lock its pages following 2PL

 Very poor performance!

 Root node (and many higher level nodes) become bottlenecks

 Every tree access begins at the root!

 Not needed anyway!

 Only row data needs 2PL (contents of tree)

 Tree structure also needs protection from concurrent access

 But only like other shared data of the server program

 Note this modern view is not covered in book

 See Graefe, A Survey of B-tree locking techniques (2010)

 B-tree locking is a huge challenge!

http://www.hpl.hp.com/techreports/2010/HPL-2010-9.pdf


Locking vs. Latching
 To protect shared data in memory, multithreaded programs use 

mutex (semaphores) AKA latches, sometimes “locks” (confusing!)
 API: enter_section/leave_section, or lock/unlock

 Every Java object contains a mutex, for convenience of Java programming: 
underlies synchronized methods

 Database people call mutexes and related mechanisms “latches”

 Need background in multi-threaded programming to understand this 
topic fully

 The tree structure needs mutex/latch protection

 Example: split node. No row data is changed, just the details in pages 
in the buffer pool. No i/o is needed (can’t hold a latch across disk i/o 
without ruining performance.)

 Latches can be provided by the same lock manager as does 2PL 
locking, and can have share and exclusive types like locks.

 In these slides, will use “lock” in quotes to mean non-2PL lock/latch 
to make it look somewhat like the book’s discussion…



Locking for B+ Trees (contd.)

 Searches

 Higher levels only direct searches for leaf pages

 Insertions

 Node on a path from root to modified leaf must be “locked” in 

X mode only if a split can propagate up to it 

 Similar point holds for deletions

 There are efficient locking protocols that keep the B-tree 

healthy under concurrent access, and support 2PL on 

rows



A Simple Tree Locking Algorithm:
(“lock” here is really a latch on tree structure)

 Search
 Start at root and descend: “crabbing down the tree”

 repeatedly, get S “lock” for child then “unlock” parent, end up with S “lock” on 
leaf page

 Get 2PL S lock on row, provide row pointer to caller

 Later, caller is done with reading row, arranges release of S “lock”

 Insert/Delete
 Start at root and descend, crabbing, obtaining X “locks” as needed

 Once child is “locked”, check if it is safe

 If child is safe, release “lock” on parent, leaving X “lock” on child

 Get 2PL X lock on place for new row/old row, insert/delete row, release “lock”

 Safe node: not about to split or coalesce
 Inserts:  Node is not full

 Deletes:  Node is not half-empty

 When control gets back to QP, transaction only has 2PL locks on rows. 
Only 2PL locks are long-term across multiple DB actions.



Difference from text

 The algorithm actions described in the text are valid, for 

example, crabbing down the tree, worrying about full 

nodes, etc.

 What’s different is that the locks for index nodes are 

shorter lived than described in the text: only 2PL locks on 

rows are kept until end of transaction, not any locks on 

index nodes.

 Note that text uses locks and releases them before 

commit, a sign that they are not actually Strict 2PL locks.

 Note the admission on pg. 564 that the text’s coverage 

on this topic is “not state of the art”. Graefe’s paper is.



An Example from pg. 563
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Insert 45 case (corrected 4/12)

Crab down tree getting X “locks” (really latches)

“Xlock” A

“Xlock” B

B is safe, so “unXlock” A

“Xlock” C

C is unsafe, so can’t “unXlock” B now

“Xlock” E (its page of rows is in buffer,)

E is safe, so “unXlock” C, and B too

Xlock E (real 2PL page lock)

“UnXLock” E

Return to QP with 2PL Xlock on page, and pointer to it in pinned buffer. 

QP will unpin when done with edits to page



A Variation on Algorithms

 Search

 As before

 Insert/Delete

 Set “locks” as if for search, get to leaf, and set 2PL X lock on 

leaf

 If leaf is not safe, release all “locks”, and restart using previous 

Insert/Delete protocol

 This is what happens if the search down the tree happens on a 

page that is not in buffer—don’t want to hold a latch across a 

disk i/o (takes too long)



Multiple-Granularity Locks

 Hard to decide what granularity to lock

 tuples vs. pages vs. files

 Shouldn’t have to decide!

 Data containers are nested: 

Tuples

Files

Pages

Database

contains



New Lock Modes, Protocol

 Allow transactions to lock at each level, but with a 

special protocol using new intention locks

• Before locking an item, must set 

intention locks on ancestors

• For unlock, go from specific to 

general (i.e., bottom-up).

• SIX mode: Like S & IX at the 

same time.
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Multiple Granularity Lock Protocol

 Each transaction starts from the root of the hierarchy

 To get S or IS lock on a node, must hold IS or IX on 

parent node

 To get X or IX or SIX on a node, must hold IX or SIX on 

parent node.

 Must release locks in bottom-up order



Snapshot Isolation (SI)

 Multiversion Concurrency Control Mechanism (MVCC)

 This means the database holds more than one value for a data item at the 
same time

 Used in PostgreSQL (open source), Oracle, others

 Readers never conflict with writers unlike traditional DBMS (e.g., IBM 
DB2)!  Read-only transactions run fast.

 Does not guarantee “real” serializability

 But:  ANSI “serializability” fulfilled, i.e., avoids anomalies in the ANSI table

 Found in use at Microsoft in 1993, published as example of MVCC



Snapshot Isolation - Basic Idea:

 Every transaction reads from its own snapshot (copy) of 

the database (will be created when the transaction starts, 

or reconstructed from the undo log).

 Writes are collected into a writeset (WS), not visible to 

concurrent transactions. 

 Two transactions are considered to be concurrent if one 

starts (takes a snapshot) while the other is in progress.



First Committer Wins Rule of SI

 At the commit time of a transaction its WS is compared 

to those of concurrent committed transactions. 

 If there is no conflict (overlapping), then the WS can be 

applied to stable storage and is visible to transactions that 

begin afterwards. 

 However, if there is a conflict with the WS of a 

concurrent, already committed transaction, then the 

transaction must be aborted. 

 That’s the “First Committer Wins Rule“

 Actually Oracle uses first updater wins, basically same 

idea, but doesn’t require separate WS



Write Skew Anomaly of SI

 In MVCC, data items need subscripts to say which version 

is being considered

 Zero version: original database value

 T1 writes new value of X, X1

 T2 writes new value of Y,  Y2

 Write skew anomaly schedule:

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 Writesets WS(T1) = {X}, WS(T2) = {Y}, do not overlap, 

so both commit.

 So what’s wrong—where’s the anomaly?



Write Skew Anomaly of SI

R1(X0) R2(X0) R1(Y0) R2(Y0,) W1(X1) C1 W2(Y2) C2

 Scenario: 

 X = husband’s balance, orig 100, 

 Y = wife’s balance, orig 100.

 Bank allows withdrawals up to combined balance

 Rule: X + Y >= 0

 Both withdraw 150, thinking OK, end up with -50 and -50.

 Easy to make this happen in Oracle at “Serializable” 

isolation.

 See conflicts, cycle in PG, can’t happen with full 2PL

 Can happen with RC/locking



How can an Oracle app handle this?

 If X+Y >= 0 is needed as a constraint, it can be 

“materialized” as sum in another column value.

 Old program: R(X)R(X-spouse)W(X)C

 New program: R(X)R(X-spouse) W(sum) W(X)C

 So schedule will have W(sum) in both transactions, and 

sum will be in both Writesets, so second committer 

aborts.

 Or, after the W(X), run a query for the sum and abort if 

it’s negative.



Oracle, Postgres: new failure to handle

 Recall deadlock-abort handling: retry the aborted 

transaction

 With SI, get "can't serialize access“

 ORA-08177: can't serialize access for this transaction

 Means another transaction won for a contended write

 App handles this error like deadlock-abort: just retry 

transaction, up to a few times

 This only happens when you set serializable isolation level



Other anomalies under SI

 Oldest sailors example

 Both concurrent transactions see original sailor data in 

snapshots, plus own updates

 Updates are on different rows, so both commit

 Neither sees the other’s update

 So not serializable: one should see one update, other should 

see two updates.

 Task Registry example:

 Both concurrent transactions see original state with 6 hours 

available for Joe

 Both insert new task for Joe

 Inserts involve different rows, so both commit



Fixing the task registry

 Following the idea of the simple write skew, we can materialize 

the constraint “workhours <= 8”

 Add a workhours column to worker table

 Old program:

 if sum(hours-for-x)+newhours<=8

 insert new task

 New program: 

 if workhours-for-x + newhours <=8 

 { update worker set workhours = workhours + newhours…

 insert new task

 }



Fixing the Oldest sailor example

 If the oldest sailor is important to the app, materialize it!

Create table oldestsailor (rating int primary key, sid int)



Oracle Read Committed Isolation

 READ COMMITTED is the default isolation level for both 

Oracle and PostgreSQL.

 A new snapshot is taken for every issued SQL statement 

(every statement sees the latest committed values).

 If a transaction T2 running in READ COMMITTED mode 

tries to update a row which was already updated by a 

concurrent transaction T1, then T2 gets blocked until T1 

has either committed or aborted

 Nearly same as 2PL/RC, though all reads occur effectively 

at the same time for the statement.



Transaction Management: 

Crash Recovery
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ACID Properties

Transaction Management must fulfill four requirements:

1. Atomicity: either all actions within a transaction are carried 
out, or none is

 Only actions of committed transactions must be visible

2. Consistency: concurrent execution must leave DBMS in 
consistent state

3. Isolation: each transaction is protected from effects of other 
concurrent transactions

 Net effect is that of some sequential execution

4. Durability: once a transaction commits, DBMS changes will 
persist

 Conversely, if a transaction aborts/is aborted, there are no effects
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Recovery Manager

 Crash recovery

 Ensure that atomicity is preserved if the system crashes while one 

or more transactions are still incomplete

 Main idea is to keep a log of operations; every action is logged 

before its page updates reach disk (Write-Ahead Log or WAL)

 The Recovery Manager guarantees Atomicity & Durability
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Motivation

 Atomicity: 

 Transactions may abort – must rollback their actions

 Durability:

 What if DBMS stops running – e.g., power failure?

crash!Desired Behavior after system 
restarts:

– T1, T2 & T3 should be 
durable

– T4 & T5 should be 
aborted (effects not seen)

T1
T2
T3
T4
T5



Assumptions

 Concurrency control is in effect

 Strict 2PL

 Updates are happening “in place”

 Data overwritten on (deleted from) the disk

 A simple scheme is needed

 A protocol that is too complex is difficult to implement

 Performance is also an important issue


