Classification

11.1 Introduction

(REVISED)

11.2 Boosting

Let T be a training set,

$$T = \{(x_1, y_1), \dots, (x_m, y_m)\},\$$

where $x_i \in X$ and $y_i \in \{-1, 1\}$. The labels y_1, \ldots, y_m specify the class where each of the examples x_i belong; namely, we have $y_j = 1$ of x_j is a positive example and $y_j = -1$ if x_j is a negative examples. If $S = \{x_1, \ldots, x_m\}$, a classifier is regarded as a function $h : S \longrightarrow \{-1, 1\}$. Note that a classifier places an example x in its correct class if xh(x) = 1.

AdaBoost, short for Adaptive Boosting, is a machine learning algorithm, formulated by Yoav Freund and Robert Schapire. AdaBoost starts with a family of weak classifiers $\mathcal{W} = \{h_1, \ldots, h_t\}$, that is, with a collection of classifiers that have high error rates and seeks to build a strong classifier h. Namely, if $h(x) = \sum_{t=1}^{t_{max}} \alpha_t h_t(x)$ is a linear combination of the weak classifiers we seek f as f(x) = sign(h(x)) for $x \in S$.

The construction process is sequential. The weak classifier used at moment t is h_t . At each moment t we have a probability distribution D_t that gives greater weight to examples that were misclassified in a previous step. We have

$$\sum_{i=1}^{m} D_t(x_i) = 1.$$

In the initial step, t = 1, the distribution is uniform, that is,

$$D_1(x_1) = \dots = D_1(x_m) = \frac{1}{m}.$$

112 11 Classification

Starting from the distribution D_t the distribution $D_{t+1}(x_i)$ is given by

$$D_{t+1}(x_i) = D_t(x_i) \frac{e^{-\alpha_t y_i h_t(x_i)}}{Z_t},$$

where Z_t is a normalization factor intended to ensure that $\sum_{i=1}^{m} D_{t+1}(x_i) = 1$. Thus, Z_t is given by

$$Z_t = \sum_{i=1}^m D_t(x_i) e^{-\alpha_t y_i h_t(x_i)}.$$

Since $e^{-\alpha_t y_i h_t(x_i)} < 1$ when $y_i = h_t(x_i)$ and $e^{-\alpha_t y_i h_t(x_i)} > 1$ when $y_i \neq h_t(x_i)$, it follows that $D_{t+1}(x_i) > D_t(x_i)$, when h_t is wrong on x_i and $D_{t+1}(x_i) < D_t(x_i)$, when h_t is correct on x_i .

Theorem 11.1. Let D be a probability distribution on the set $S = \{x_1, \ldots, x_m\}$ and let $h: S \longrightarrow \{-1, 1\}$ be a classifier. Define

$$Z(\alpha) = \sum_{i=1}^{m} D(x_i) e^{-\alpha y_i h(x_i)}.$$

The minimum value of $Z(\alpha)$ is achieved when

$$\alpha = \frac{1}{2} \ln \frac{1-\epsilon}{\epsilon},$$

where ϵ is the probability of error

$$\epsilon = \sum_{i=1}^{m} \{ D(x_i) | y_i \neq h_i(x_i) \}.$$

Proof. We have

$$\frac{dZ}{d\alpha} = \sum_{i=1}^{m} -y_i h(x_i) D(x_i) e^{-\alpha y_i h(x_i)}$$
$$= -\sum_{i=1}^{m} \{D(x_i) e^{-\alpha} | y_i = h(x_i)\} + \sum_{i=1}^{m} \{D(x_i) e^{\alpha} | y_i \neq h_i(x_i)\}$$
$$= -e^{-\alpha} (1-\epsilon) + e^{\alpha} \epsilon,$$

Thus, the value of α for which Z is minimal is given by $\alpha = \frac{1}{2} \ln \frac{1-\epsilon}{\epsilon}$.

Theorem 11.2. For the training error of f(x) = sign(h(x)) we have:

$$\frac{1}{m} \Big| \{i|h(x_i) \neq y_i\} \Big| \le \prod_{t=1}^T Z_t.$$

Proof. Note that

$$D_{t+1}(x_i) = \frac{D_1(x_i)}{\prod_{i=1}^t Z_i} e^{-\sum_{t=1}^t \alpha_t y_i h_t(x_i)}$$

= $\frac{1}{m \prod_{i=1}^t Z_i} e^{-\sum_{t=1}^t \alpha_t y_i h_t(x_i)}$
= $\frac{1}{m \prod_{i=1}^t Z_i} e^{-y_i \sum_{t=1}^t \alpha_t h_t(x_i)}$
= $\frac{1}{m \prod_{i=1}^t Z_i} e^{-y_i h(x_i)}.$

The last equality implies

$$e^{-y_i h(x_i)} = m D_{t+1}(x_i) \prod_{i=1}^t Z_i.$$
(11.1)

For the classifier $f = sign\left(\sum_{t=1}^{t_{max}} \alpha_t h_t\right)$ define

$$\chi_f(x) = \begin{cases} 1 & \text{if } f(x) \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

In other words, $\chi_f(x) = 1$ if and only if the classifier f erred on x. Thus, the error rate of f is $\epsilon_f = \frac{1}{m} \sum_{i=1}^m \chi_f(x_i)$. If $f(x_i) \neq y_i$, then we have either $f(x_i) = 1$ (and therefore, $h(x_i) > 0$) and $y_i = -1$, or $f(x_i) = -1$ (and therefore, $h(x_i) < 0$) and $y_i = 1$. Thus, in either case we have $y_ih(x_i) \leq 0$, which implies $e^{-y_ih(x_i)} > 1$ which implies $\chi_f(x_i) \leq e^{-y_ih(x_i)}$. Consequently, taking into account Equality (11.1), we have

$$\frac{1}{m}\sum_{i=1}^{m}\chi_{h}(i) \leq \frac{1}{m}\sum_{i=1}^{m}e^{-y_{i}h(x_{i})} = \sum_{i=1}^{m}\left(\prod_{t=1}^{T}Z_{t}\right)D_{T+1}(x_{i}) = \prod_{t=1}^{T}Z_{t}.$$

This allows us to conclude that $\prod_{t=1}^{T} Z_t$ is an upper bound of the training error.

Since
$$\alpha_t = \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$$
 it follows that

$$Z_t = \sum_{i=1}^m D_t(x_i) e^{-\alpha_t y_i h_t(x_i)}$$

$$= \sum_i \{D_t(x_i) e^{-\alpha_t} \mid y_i = h_t(x_i)\} + \sum_i \{D_t(x_i) e^{\alpha_t} \mid y_i \neq h_t(x_i)\}$$

$$= (1-\epsilon_t) e^{-\alpha_t} + \epsilon_t e^{-\alpha_t}$$

$$= 2\sqrt{\epsilon_t(1-\epsilon_t)}.$$

Algorithm 11.2.1: The Adaboost Algorithm	
	Data : A data set $(x_1, y_1), \ldots, (x_m, y_m)$, where $x_i \in X$ and $y_i \in \{-1, 1\}$
	Result : A boosted classifier h
1	initialize weights $D_1(x_i) = \frac{1}{m}$ for $1 \le i \le m$
2	for $t = 1$ to t_{max} do
3	select a training set drawn from the distribution D_t ;
4	train h_t such that $\epsilon_t = \sum_{i=1}^m \{D_t(x_i) \mid y_i \neq h_t(x_i)\}$ is minimal;
5	${f if} \ \epsilon_t \geq 0.5 \ {f then}$
6	reset D_t to D_1 and abandon h_t
7	end
8	set $\alpha_t = 0.5 \log \frac{1 - \epsilon_t}{\epsilon_t};$
9	update $D_{t+1}(x_i) = \frac{1}{Z_t} \cdot D_t(x_i) e^{-\alpha_t y_i h_t(x_i)};$
10	end
11	$f(x) = \sum_{t=1}^{T} \alpha_T h_t(x)$
12	return $\overline{h(x)} = sign(f(x))$

The pseudocode of the AdaBoost is shown in Algorithm 11.2.1. The algorithm maintains a weight distribution $D_t(x_i)$ on the training instances x_1, \ldots, x_m from which the data subset S_t is chosen for each classifier h_t . Initially, the distribution is uniform, so all instances have equal chances to participate in the training set. The training error ϵ_t is also weighted by the distribution, such that ϵ_t is the sum of the distribution weights of the instances misclassified by h_t . We require that this error be less than $\frac{1}{2}$ (which is the error rate of a classifier that would assign classes at random).

11.3 Bagging

Bagging is a technique invented by L. Breiman [3]. The term "bagging" is an acronym of *bootstrap aggregating*.

As before, a *learning set* consists of a data set $\mathcal{L} = \{(x_i, y_i) \mid 1 \leq i \leq m\}$, where y_i is either the class label or a numerical label. Assume that we have an algorithm for using this learning set to form a predictor $\phi(x, \mathcal{L})$.

Suppose that we are given a sequence of learning sets (\mathcal{L}_k) , each consisting of m_k independent observations from the same underlying distribution as \mathcal{L} . Our goal is to use the sequence (\mathcal{L}_k) to get a better predictor than $\phi(x, \mathcal{L})$ by using the sequence of predictors $(\phi(x, \mathcal{L}_k))$.

If y is numerical one could use the average of $\phi(x, \mathcal{L}_k)$, that is $\phi_A(x) = E_{\mathcal{L}}(\phi(x, \mathcal{L}))$, where $E_{\mathcal{L}}$ is expectation over \mathcal{L} and A denotes aggregation.

If $\phi(x, \mathcal{L})$ predicts a class $j, 1 \leq j \leq J$, then one method of aggregating is by voting.

Usually, we have a single learning set \mathcal{L} . Still, an imitation of the process leading to ϕ_A can be done by taking *bootstrap samples* $\{\mathcal{L}^{(B)}\}$ from \mathcal{L} and form $\{\phi(x, \mathcal{L}^{(B)})\}$. If y is numerical take ϕ_B as

Exercises and Supplements 115

$$\phi_B(x) = a f g_B \phi(x, \mathcal{L}^{(B)}).$$

The $\mathcal{L}^{(B)}$ form replicate the data set, each consisting of *n* cases, drawn at random, but with replacement from \mathcal{L} . Each (y_n, x_n) may appear repeated times or not at all in any particular $\mathcal{L}^{(B)}$.

A critical factor in whether bagging improves the accuracy is the stability of the procedure for constructing ϕ . If changes in \mathcal{L} produces small changes in ϕ , then ϕ_B will be close to ϕ . Improvement will occur for *unstable* procedures, where a small change in \mathcal{L} can result in a large change in φ . So, for unstable procedures, bagging works well.

MATLAB Computations

Exercises and Supplements

1.

Bibliographical Comments