
11

Classification

11.1 Introduction

(REVISED)

11.2 Boosting

Let T be a training set,

T = {(x1, y1), . . . , (xm, ym)},

where xi ∈ X and yi ∈ {−1, 1}. The labels y1, . . . , ym specify the class where
each of the examples xi belong; namely, we have yj = 1 of xj is a positive
example and yj = −1 if xj is a negative examples. If S = {x1, . . . , xm}, a
classifier is regarded as a function h : S −→ {−1, 1}. Note that a classifier
places an example x in its correct class if xh(x) = 1.

AdaBoost, short for Adaptive Boost ing, is a machine learning algorithm,
formulated by Yoav Freund and Robert Schapire. AdaBoost starts with a fam-
ily of weak classifiers W = {h1, . . . , ht}, that is, with a collection of classifiers
that have high error rates and seeks to build a strong classifier h. Namely, if
h(x) =

∑tmax

t=1 αtht(x) is a linear combination of the weak classifiers we seek
f as f(x) = sign(h(x)) for x ∈ S.

The construction process is sequential. The weak classifier used at moment
t is ht. At each moment t we have a probability distribution Dt that gives
greater weight to examples that were misclassified in a previous step. We have

m
∑

i=1

Dt(xi) = 1.

In the initial step, t = 1, the distribution is uniform, that is,

D1(x1) = · · · = D1(xm) =
1

m
.



112 11 Classification

Starting from the distribution Dt the distribution Dt+1(xi) is given by

Dt+1(xi) = Dt(xi)
e−αtyiht(xi)

Zt

,

where Zt is a normalization factor intended to ensure that
∑m

i=1 Dt+1(xi) = 1.
Thus, Zt is given by

Zt =

m
∑

i=1

Dt(xi)e
−αtyiht(xi).

Since e−αtyiht(xi) < 1 when yi = ht(xi) and e−αtyiht(xi) > 1 when yi 6= ht(xi),
it follows that Dt+1(xi) > Dt(xi), when ht is wrong on xi and Dt+1(xi) <

Dt(xi), when ht is correct on xi.

Theorem 11.1. Let D be a probability distribution on the set S = {x1, . . . , xm}
and let h : S −→ {−1, 1} be a classifier. Define

Z(α) =

m
∑

i=1

D(xi)e
−αyih(xi).

The minimum value of Z(α) is achieved when

α =
1

2
ln

1 − ǫ

ǫ
,

where ǫ is the probability of error

ǫ =

m
∑

i=1

{D(xi)|yi 6= hi(xi)}.

Proof. We have

dZ

dα
=

m
∑

i=1

−yih(xi)D(xi)e
−αyih(xi)

= −
∑

{D(xi)e
−α|yi = h(xi)} +

∑

{D(xi)e
α|yi 6= hi(xi)}

= −e−α(1 − ǫ) + eαǫ,

Thus, the value of α for which Z is minimal is given by α = 1
2 ln 1−ǫ

ǫ
.

Theorem 11.2. For the training error of f(x) = sign(h(x)) we have:

1

m

∣

∣

∣
{i|h(xi) 6= yi}

∣

∣

∣
≤

T
∏

t=1

Zt.



11.2 Boosting 113

Proof. Note that

Dt+1(xi) =
D1(xi)
∏t

i=1 Zi

e−
∑

t

t=1
αtyiht(xi)

=
1

m
∏t

i=1 Zi

e−
∑

t

t=1
αtyiht(xi)

=
1

m
∏t

i=1 Zi

e−yi

∑

t

t=1
αtht(xi)

=
1

m
∏t

i=1 Zi

e−yih(xi).

The last equality implies

e−yih(xi) = mDt+1(xi)

t
∏

i=1

Zi. (11.1)

For the classifier f = sign
(

∑tmax

t=1 αtht

)

define

χf (x) =

{

1 if f(x) 6= y,

0 otherwise.

In other words, χf (x) = 1 if and only if the classifier f erred on x. Thus, the
error rate of f is ǫf = 1

m

∑m

i=1 χf (xi).
If f(xi) 6= yi, then we have either f(xi) = 1 (and therefore, h(xi) > 0)

and yi = −1, or f(xi) = −1 (and therefore, h(xi) < 0) and yi = 1. Thus, in
either case we have yih(xi) ≤ 0, which implies e−yih(xi) > 1 which implies
χf (xi) ≤ e−yih(xi). Consequently, taking into account Equality (11.1), we have

1

m

m
∑

i=1

χh(i) ≤
1

m

m
∑

i=1

e−yih(xi) =

m
∑

i=1

(

T
∏

t=1

Zt

)

DT+1(xi) =

T
∏

t=1

Zt.

This allows us to conclude that
∏T

t=1 Zt is an upper bound of the training
error.

Since αt = 1
2 ln 1−ǫt

ǫt

it follows that

Zt =

m
∑

i=1

Dt(xi)e
−αtyiht(xi)

=
∑

i

{Dt(xi)e
−αt | yi = ht(xi)} +

∑

i

{Dt(xi)e
αt | yi 6= ht(xi)}

= (1 − ǫt)e
−αt + ǫte

−αt

= 2
√

ǫt(1 − ǫt).



114 11 Classification

Algorithm 11.2.1: The Adaboost Algorithm
Data: A data set (x1, y1), . . . , (xm, ym), where xi ∈ X and yi ∈ {−1, 1}
Result: A boosted classifier h

initialize weights D1(xi) = 1
m

for 1 ≤ i ≤ m1

for t = 1 to tmax do2

select a training set drawn from the distribution Dt;3

train ht such that ǫt =
∑m

i=1{Dt(xi) | yi 6= ht(xi)} is minimal;4

if ǫt ≥ 0.5 then5

reset Dt to D1 and abandon ht6

end7

set αt = 0.5 log 1−ǫt

ǫt
;8

update Dt+1(xi) = 1
Zt

· Dt(xi)e
−αtyiht(xi);9

end10

f(x) =
∑T

t=1 αT ht(x)11

return h(x) = sign(f(x))12

The pseudocode of the AdaBoost is shown in Algorithm 11.2.1. The al-
gorithm maintains a weight distribution Dt(xi) on the training instances
x1, . . . , xm from which the data subset St is chosen for each classifier ht.
Initially, the distribution is uniform, so all instances have equal chances to
participate in the training set. The training error ǫt is also weighted by the
distribution, such that ǫt is the sum of the distribution weights of the in-
stances misclassified by ht. We require that this error be less than 1

2 (which
is the error rate of a classifier that would assign classes at random).

11.3 Bagging

Bagging is a technique invented by L. Breiman [3]. The term “bagging” is an
acronym of bootstrap aggregating.

As before, a learning set consists of a data set L = {(xi, yi) | 1 ≤ i ≤ m},
where yi is either the class label or a numerical label. Assume that we have
an algorithm for using this learning set to form a predictor φ(x, L).

Suppose that we are given a sequence of learning sets (Lk), each consisting
of mk independent observations from the same underlying distribution as L.
Our goal is to use the sequence (Lk) to get a better predictor than φ(x, L) by
using the sequence of predictors (φ(x, Lk).

If y is numerical one could use the average of φ(x, Lk), that is φA(x) =
EL(φ(x, L)), where EL is expectation over L and A denotes aggregation.

If φ(x, L) predicts a class j, 1 ≤ j ≤ J , then one method of aggregating is
by voting.

Usually, we have a single learning set L. Still, an imitation of the process
leading to φA can be done by taking bootstrap samples {L(B)} from L and
form {φ(x, L(B)}. If y is numerical take φB as



Exercises and Supplements 115

φB(x) = afgBφ(x, L(B)).

The L
(B) form replicate the data set, each consisting of n cases, drawn at

random, but with replacement from L. Each (yn, xn) may appear repeated
times or not at all in any particular L

(B).
A critical factor in whether bagging improves the accuracy is the stability

of the procedure for constructing φ. If changes in L produces small changes in
φ, then φB will be close to φ. Improvement will occur for unstable procedures,
where a small change in L can result in a large change in ϕ. So, for unstable
procedures, bagging works well.

MATLAB Computations

Exercises and Supplements

1.

Bibliographical Comments


