HOMEWORK 1

due: October 3, 2011

1. Write a JAVA class to convert a comma-separated file into an arff formatted table (the WEKA format).
2. Suppose that $d: S \times S \longrightarrow \mathbb{R}$ is a metric. Determine the correct answer to the following questions:

- Is $d^{2}(x, y)$ is a distance on \mathbf{S} ?
- Is $\sqrt{d(x, y)}$ a distance on S ?

Give full justification of your answers to receive credit. Yes/No answers are not sufficient.
3. Let d be an ultrametric on a set S and let x, y, z, u be four members of S and let $d(x, y), d(x, z), d(x, u), d(y, z), d(y, u), d(z, u)$ be the distances existent between these points. How many distinct values can these 6 numbers have?
4. Write a JAVA program that produces a number of 10 pairs of n-dimensional random vectors u whose components are uniformly located in the interval $[0,1]$. Run the program for $n=10,100,1000$. In each case compute the angle between vectors. What happens when the dimensionality increases?
5. Let u be a fixed element of a metric space (S, d). Define the function d_{u} : $S \times S \longrightarrow \mathbb{R}$ as

$$
d_{u}(x, y)= \begin{cases}0 & \text { if } x=y \\ d(x, u)+d(u, y) & \text { if } x \neq y\end{cases}
$$

for $x, y \in S$. Prove that d_{u} is a metric on S.

