Homework 2

Due November 9, 2011

1. Design a Java class named RandomPoints that receives as input:
(a) a number n of points;
(b) the dimensionality p of the space \mathbb{R}^{p} in which these points reside;
(c) the coordinates $\left(c_{1}, \ldots, c_{p}\right)$ of the center \mathbf{c} around which these points are grouped;
(d) the size d of the cube centered in \mathbf{c} that contain these points.
The class should generate a $n \times p$ matrix such that each row contains the coordinates of a point. If $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)$ is one of these points then x_{i} should be uniformly distributed in the interval $\left[c_{i}-d / 2, c_{i}+d / 2\right]$.
2. For $p=2$ use the class RandomPoints to produce 6 groups of points (each group containing 40 points) and draw these groups.
3. Using system R (which you can download for free from "Project R"), and the package cluster of this system, apply hierarchical clustering to the set of 240 points produced earlier using a variety of methods (single link, complete link, Ward, average distance). Also, use the k-means method for $k=5,6,7$ Compare the resulting clusterings.
4. Design a clustering algorithm for grouping one-dimensional points (essentially numbers on the real line). Only the pseudocode is required and you should take advantage that the points to be clustered are unidimensional. The implementation is optional.
