
Introduction to Compiler Construction in a Java World

Bill Campbell, Swami Iyer, Bahar Akbal-Delibaş

Errata

Here you can find a listing of known errors in our text. If you find others, please let us know about
them at j--@cs.umb.edu. We appreciate your feedback.

Chapter 1: Compilation

On page 6, Figure 1.6 the ”JVM Code” on the left of the figure must be ”Source Language Program”.
Here is the updated figure.

Reported by Antoine Marchal on Jun 17, 2014

1

On page 14, Figure 1.9 is missing the formal parameters of the main() method. Here is the updated
figure.

Reported by Bill Campbell on Jan 28, 2013

On page 18, the following line

For example, the j-- program . . .

should be

For example, the j-- program . . .

Reported by Pierre Schaus on Feb 7, 2013

2

On page 19, the following code snippet

public class DivisionTest extends TestCase {

...

should be

package junit;

import junit.framework.TestCase;

import pass.Division;

public class DivisionTest extends TestCase {

...

Reported by Daisuke Tanaka on Feb 1, 2013

Chapter 2: Lexical Analysis

On page 41, the set of moves M currently given by

M = {m(0, a) = 1,m(0, b) = 1,m(1, a) = 1,m(1, b) = 1,m(1, ✏) = 0,m(1, b) = 2}

should be

M = {m(0, a) = 1,m(1, a) = 1,m(1, b) = 1,m(1, ✏) = 0,m(1, b) = 2}

Reported by Pierre Schaus on Feb 11, 2013

On page 46, the following line in Definition 2.6

. . . set of states S includes s and . . .

should be

. . . set of states S includes S and . . .

Reported by Pierre Schaus on Feb 7, 2013

3

Chapter 3: Parsing

On page 59, the following code snippet

package pass;f

...

should be

package pass;

...

Reported by Pierre Schaus on Feb 14, 2013

On page 88, the following line in Algorithm 3.6

where Xj ::= �1|�2| . . . |�k are the current rules defining Xi

should be

where Xj ::= �1|�2| . . . |�k are the current rules defining Xj

Reported by Pierre Schaus on Feb 14, 2013

Chapter 5: JVM Code Generation

The tables on page 187 and 189 are incorrect. Here are the updated tables.

x a[i] o.f C.sf

lhs = y iload y’

[dup]

istore x’

aload a’

iload i’

iload y’

[dup_x2]

iastore

aload o’

iload y

[dup_x1]

putfield f

iload y’

[dup]

putstatic sf

lhs += y iload x’

iload y’

iadd

[dup]

istore x’

aload a’

iload i’

dup2

iaload

iload y’

iadd

[dup_x2]

iastore

aload o’

dup

getfield f

iload y’

iadd

[dup_x1]

putfield f

getstatic sf

iload y’

iadd

[dup]

putstatic sf

++lhs iinc x’,1

[iload x’]

aload a’

iload i’

dup2

iaload

iconst_1

iadd

[dup_x2]

iastore

aload o’

dup

getfield f

iconst_1

iadd

[dup_x1]

putfield f

getstatic sf

iconst_1

iadd

[dup]

putstatic sf

lhs-- [iload x’]

iinc x’,-1

aload a’

iload i’

dup2

iaload

[dup_x2]

iconst_1

isub

iastore

aload o’

dup

getfield f

[dup_x1]

iconst_1

isub

putfield f

getstatic sf

[dup]

iconst_1

isub

putstatic sf

4

x a[i] o.f C.sf

codegenLoadLhsLvalue() [none] aload a’

iload i’

aload o’ [none]

codegenLoadLhsRvalue() iload x’ dup2

iaload

dup

getfield f

getstatic sf

codegenDuplicateRvalue() dup dup_x2 dup_x1 dup

codegenStore() istore x’ iastore putfield f putstatic sf

Reported by Bill Campbell on April 15, 2013

Chapter 7: Register Allocation

In Figure 7.1 on page 247 and Figure 7.3 on page 250, the link from block B2 to block B3 is missing.
Here are the updated figures.

5

 0: LDC [1] [V32|I]
 5: MOVE $a0 [V33|I]
10: MOVE [V32|I] [V34|I]

15: LDC [0] [V35|I]
20: BRANCH [LE] [V33|I] [V35|I] B4

25: LDC [-1] [V36|I]
30: ADD [V33|I] [V36|I] [V37|I]
35: MUL [V34|I] [V33|I] [V38|I]
40: MOVE [V38|I] [V34|I]
45: MOVE [V37|I] [V33|I]
50: BRANCH B2

55: MOV [V34|I] $v0
60: RETURN $v0

B0 succ: B1

B1 pred: B0 succ: B2

B2 pred: B1 B3 succ:B3 B4

B3 pred: B2 succ: B2

B4 pred: B2

6

 0: LDC [1] [V32|I]
 5: MOVE $a0 [V33|I]
10: MOVE [V32|I] [V34|I]

15: LDC [0] [V35|I]
20: BRANCH [LE] [V33|I] [V35|I] B4

25: LDC [-1] [V36|I]
30: ADD [V33|I] [V36|I] [V37|I]
35: MUL [V34|I] [V33|I] [V38|I]
40: MOVE [V38|I] [V34|I]
45: MOVE [V37|I] [V33|I]
50: BRANCH B2

55: MOV [V34|I] $v0
60: RETURN $v0

B0 succ: B1

B1 pred: B0 succ: B2

B2 pred: B1 B3 succ:B3 B4

B3 pred: B2 succ: B2

B4 pred: B2

Local Liveness Sets

liveUse:
liveDef:

liveUse: $a0
liveDef: V32 V33 V34

liveUse: V33
liveDef: V35

liveUse: V33 V34
liveDef: V33 V34 V36 V37 V38

liveUse: V34
liveDef: $v0

Reported by Josef Joller on Dec 15, 2013

Algorithm 7.9 uses ! for logical not, which is confusing since ! also represents logical not in j--. Here is
the corrected version, with ! replaced by not.

7

Algorithm 1 Graph Coloring Register Allocation

Input: The control-flow graph g for a method with LIR that makes use of virtual registers
Output: The same g but with virtual registers replaced by physical registers
registersAssignedSuccessfully false

repeat
repeat
buildIntervals()
buildInterferenceGraph()

until not coalesceRegistersSuccessful()
buildAdjacencyLists()
computeSpillCosts()
pruneGraph()
registersAssignedSuccessfully assignRegisters()
if not registersAssignedSuccessfully then
generateSpillCode()

end if
until registersAssignedSuccessfully

Reported by Bill Campbell on Nov 30, 2014

8

