Recursion

- Recursive Thinking
- Recursive Programming
- Recursion versus Iteration
- Direct versus Indirect Recursion
- More on Project 2
- Reading L&C 7.1 – 7.2
Recursive Thinking

• Many common problems can be stated in terms of a “base case” and an “inferred sequence of steps” to develop all examples of the problem statement from the base case.

• Let’s look at one possible definition of a comma separated values (.csv) list:
 – A list can contain one item (the base case)
 – A list can contain one item, a comma, and a list (the inferred sequence of steps)
Recursive Thinking

- The above definition of a list is recursive because the second portion of the definition depends on there already being a definition for a list.
- The second portion sounds like a circular definition that is not useful, but it is useful as long as there is a defined base case.
- The base case gives us a mechanism for ending the circular action of the second portion of the definition.
Recursive Thinking

• Using the recursive definition of a list:
 A list is a: number
 A list is a: number comma list
• Leads us to conclude 24, 88, 40, 37 is a list

```
number comma list
d 24 , 88, 40, 37
d 88 , 40, 37
d 40 , 37
number
37
```
Recursive Thinking

• Note that we keep applying the recursive second portion of the definition until we reach a situation that meets the first portion of the definition (the base case)

• Then we apply the base case definition

• What would have happened if we did not have a base case defined?
Infinite Recursion

- If there is no base case, use of a recursive definition becomes infinitely long and any program based on that recursive definition will never terminate and produce a result.
- This is similar to having an inappropriate or no condition statement to end a “for”, “while”, or “do … while” loop.
Recursion in Math

• One of the most obvious math definitions that can be stated in a recursive manner is the definition of integer factorial

• The factorial of a positive integer \(N \) \((N!)\) is defined as the product of all integers from 1 to the integer \(N \) (inclusive)

• That definition can be restated recursively

\[
1! = 1 \quad \text{(the base case)} \\
N! = N \times (N - 1)! \quad \text{(the recursion)}
\]
Recursion in Math

- Using that recursive definition to get 5!

\[
5! = 5 \times (5-1)!
\]

\[
5! = 5 \times 4 \times (4-1)!
\]

\[
5! = 5 \times 4 \times 3 \times (3-1)!
\]

\[
5! = 5 \times 4 \times 3 \times 2 \times (2-1)!
\]

\[
5! = 5 \times 4 \times 3 \times 2 \times 1! \text{ (the base case)}
\]

\[
5! = 5 \times 4 \times 3 \times 2 \times 1
\]

\[
5! = 120
\]
Recursive Programming

• Recursive programming is an alternative way to program loops without using “for”, “while”, or “do … while” statements

• A Java method can call itself

• A method that calls itself must choose to continue using either the recursive definition or the base case definition

• The sequence of recursive calls must make progress toward meeting the definition of the base case
Recursion versus Iteration

• We can calculate 5! using a loop
  ```java
  int fiveFactorial = 1;
  for (int i = 1; i <= 5; i++)
      fiveFactorial *= i;
  ```

• Or we can calculate 5! using recursion
  ```java
  int fiveFactorial = factorial(5);
  ...
  private int factorial(int n)
  {
      return n == 1? 1 : n * factorial(n - 1);
  }
  ```
Recursion versus Iteration

factorial(5) -> factorial
factorial(4) -> factorial
factorial(3) -> factorial
factorial(2) -> factorial
factorial(1) -> factorial

main -> return 120
factorial(5) -> return 24
factorial(4) -> return 6
factorial(3) -> return 2
factorial(2) -> return 1
factorial(1) -> return 1
Recursion versus Iteration

• Note that in the “for” loop calculation, there is only one variable containing the factorial value in the process of being calculated.

• In the recursive calculation, a new variable \(n \) is created on the system stack each time the method factorial calls itself.

• As factorial calls itself proceeding toward the base case, it pushes the current value of \(n-1 \).

• As factorial returns after the base case, the system pops the now irrelevant value of \(n-1 \).
Recursion versus Iteration

• Note that in the “for” loop calculation, there is only one addition (i++) and a comparison (i<=5) needed to complete each loop

• In the recursive calculation, there is a comparison (n==1) and a subtraction (n - 1), but there is also a method call/return needed to complete each loop

• Typically, a recursive solution uses both more memory and more processing time than an iterative solution
Direct versus Indirect Recursion

• Direct recursion is when a method calls itself
• Indirect recursion is when a method calls a second method (and/or perhaps subsequent methods) that can call the first method again
Calling main() Recursively J

• Any Java method can call itself
• Even main() can call itself as long as there is a base case to end the recursion
• You are restricted to using a String [] as the parameter list for main()
• The JVM requires the main method of a class to have that specific parameter list
public class RecursiveMain
{
 public static void main(String[] args)
 {
 if (args.length > 1) {
 String[] newargs = new String[args.length - 1];
 for (int i = 0; i < newargs.length; i++)
 newargs[i] = args[i + 1];
 main(newargs); // main calls itself with a new args array
 }
 System.out.println(args[0]);
 return;
 }
}

java RecursiveMain computer science is fun
fun
is
science
computer
More on Project 2

• The Solve2 class for project 2 needs a recursive `recurse()` method

• You don’t need an explicit stack to backtrack

• When `recurse` calls itself:
 – the context of all local variables (path, current, and end) is left on the system stack
 – a new context for all local variables is created on the top of the system stack

• The return from `recurse()` pops the previous context off the system stack
More on Project 2

• The context variables consist of:
 – The Stack\textless Bird\textgreater path that gets passed each time recurse is called. In my suggested solution strategy, you push Bird references on this stack in reverse order along the path when you reach the end Bird and start returning true
 – The Bird current that gets used to check for the end and get the next Bird in its direction
 – The Bird end that is used to check against the current Bird to determine if solved or not
Calling Sequence / System Stack

main
 recurse(path, B2.0, B2.6)
 recurse(path, B1.1, B2.6)
 recurse(path, B1.0, B2.6)
 recurse(path, B2.0, B2.6)
 recurse(path, B0.2, B2.6)

System Stack (Context for Each Instance of Recurse Above)

<table>
<thead>
<tr>
<th>path[empty]</th>
<th>curr. = B2.0</th>
<th>end = B2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>path[empty]</td>
<td>curr. = B1.1</td>
<td>end = B2.6</td>
</tr>
<tr>
<td>path[empty]</td>
<td>curr. = B1.0</td>
<td>end = B2.6</td>
</tr>
<tr>
<td>path[empty]</td>
<td>curr. = B2.0</td>
<td>end = B2.6</td>
</tr>
<tr>
<td>path[empty]</td>
<td>curr. = B0.2</td>
<td>end = B2.6</td>
</tr>
</tbody>
</table>

Calling Sequence / System Stack

From B3.3

```
<table>
<thead>
<tr>
<th>path[empty]</th>
<th>curr. = B2.2</th>
<th>end = B2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>path[empty]</td>
<td>curr. = B1.2</td>
<td>end = B2.6</td>
</tr>
<tr>
<td>path[empty]</td>
<td>curr. = B3.0</td>
<td>end = B2.6</td>
</tr>
<tr>
<td>path[empty]</td>
<td>curr. = null</td>
<td>end = B2.6</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>path[empty]</th>
<th>curr. = B2.2</th>
<th>end = B2.6</th>
</tr>
</thead>
</table>
```

** System Stack (Context for Each Instance of Recurse Above **
Returning Sequence / System Stack

System Stack (Context for Each Instance of Recurse Above)

<table>
<thead>
<tr>
<th>Path</th>
<th>Current</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>path[B1.5, B4.5, B4.4, B2.6]</td>
<td>B1.5</td>
<td>B2.6</td>
</tr>
<tr>
<td>path[B4.5, B4.4, B2.6]</td>
<td>B4.5</td>
<td>B2.6</td>
</tr>
<tr>
<td>path[B4.4, B2.6]</td>
<td>B4.4</td>
<td>B2.6</td>
</tr>
<tr>
<td>path[B2.6]</td>
<td>B2.6</td>
<td>B2.6</td>
</tr>
</tbody>
</table>