
1

Homework

• Reading

– PAL, pp 201-216, 297-312

• Machine Projects

– Finish mp2warmup

• Questions?

– Start mp2 as soon as possible

• Labs

– Continue labs with your assigned section

2

Coding and Calling Functions

• An assembly language programmer handles a

lot of details to coordinate the code for calling

a function and the code in the function itself

• There are two mechanisms in the instruction

set for calling and returning from functions:

• Linux system calls and returns

int $0x80 and iret

• C library style function calls and returns

call and ret

3

Coding and Calling Functions

• A really “old school” way to pass data back and

forth between assembly language functions is to

leave all data in “global memory”

• This was really very efficient back when CPU’s

were not very powerful and some did not have

hardware supported stack mechanisms

• Today we understand the software maintenance

problem that this choice creates and the CPU’s
are powerful enough for us to not need to do it

4

Coding and Calling Functions

• A somewhat “old school” way to call functions:

– Load up registers with input values (if any) before call

– Unload return values (if any) from registers after return

• This is still in use in Linux system calls, such as:

<unistd> write as a Linux system call

movl $4, %eax # system call value

movl $1, %ebx # file descriptor

movl $output, %ecx # *buffer

movl $len, %edx # length

int $0x80 # call to system

5

Coding and Calling Functions

• We won’t use the Linux system call and return

mechanism in this course, but:

– I feel that you should be aware of it and recognize it

when the textbook uses it in an example

– We’ll use the iret instruction later with hardware

interrupts

• We will use the call and ret mechanism as is

typically used for C library function calls

6

Call/Return to/from our C Function

C compiler generated code for:

static int z = mycode(x, y);

.text

. . .

pushl y # put arg y on stack

pushl x # put arg x on stack

call _mycode # call function mycode

addl $8, %esp # purge args from stack

movl %eax, z # save return value

. . .

.data

z:

.long 0 # location for variable z

7

C Library Coding Conventions

• Use same function name as used in the calling C
program except add a leading underscore ‘_’

• Setup C compiler stack frame (optional)

• Use only %eax, %ecx, and %edx to not affect
registers the C compiler expects to be preserved

• Save/restore any other registers on stack if used

• Put return value in %eax

• Remove C compiler stack frame (optional)

• Return

8

C Library Coding Conventions

• Example of Assembly code for C function:
int mycode(int x, int y)

{

/* automatic variables */

int i;

int j;

. . .

return result;

}

9

C Library Coding Conventions

• Start with basic calling sequence discussed earlier

.text

.globl _mycode

_mycode: # entry point label

. . . # code as needed

movl xxx, %eax # set return value

ret # return to caller

.end

10

C Library Coding Conventions

• If function has arguments or automatic variables

(that require n bytes), include this optional code

• Assembly language after entry point label (enter):
pushl %ebp # set up stack frame

movl %esp,%ebp # save %esp in %ebp

subl $n,%esp # automatic variables

• Assembly language before ret (leave):
movl %ebp, %esp # restore %esp from %ebp

popl %ebp # restore %ebp

11

C Compiler Reserved Registers

• The C compiler assumes it can keep data in certain
registers (%ebx, %ebp) when it generates code

• If assembly code uses compiler’s reserved registers, it
must save and restore the values for the calling C code

• Example:
. . . # we can’t use %ebx yet

pushl %ebx # save register contents

. . . # we can use %ebx now

popl %ebx # restore %ebx

. . . # we can’t use %ebx any more

ret

Matching pair

12

C Library Coding Conventions

• State of the stack during function execution:

yx%eip%ebpij

%ebp%esp

Argument

Variables

Automatic

Variables

i = -4(%ebp)

j = -8(%ebp)

Lower level

Function Calls

Lower Level

Function Returns x = 8(%ebp)

y = 12(%ebp)

Return

Address

Points to previous stack frame

%ebx

13

Turning It Around

• Calling a C function from Assembly Language

– Can use printf to help debug assembly code

(although it’s better to use either tutor or gdb as a

debugger)

– Assume C functions “clobber” the contents of the

%eax, %ecx, and %edx registers

– If you need to save them across a C function call:

• Push them on the stack before the call

• Pop them off the stack after the return

14

Printing From Assembler

• The C calling routine (helloc.c according to our

convention) to get things going is:

extern void hello();

int main(int argc, char ** argv)

{

hello();

return 0;

}

15

Printing From Assembler

• Assembly code to print Hello:

.globl _hello

.text

_hello:

pushl $hellostr # pass string argument

call _printf # print the string

addl $4, %esp # restore stack

ret

.data

hellostr:

.asciz “Hello\n” # printf format string

.end

16

Printing from Assembler

• Assembly code to use a format statement and variable:

. . .

pushl x # x is a 32-bit integer

pushl $format # pointer to format

call _printf # call C printf routine

addl $8, %esp # purge the arguments

. . .

x: .long 0x341256

format: .asciz “x is: %d”

17

Preserving Compiler Scratch Registers

• C compiler assumes that it can use certain registers when
it generates code (%eax, %ecx, and %edx)

• A C function may or may not clobber the value of these
registers

• If assembly code needs to preserve the values of these
registers across a C function call, it must save/restore
their:
. . . # if ecx is in use

pushl %ecx # save %ecx

call _cFunction # may clobber ecx

popl %ecx # restore %ecx

. . . # ecx is OK again

18

Integrating C and Assembly

• Pick up the makefile from ~bobw/cs341/mp2

• Always read the makefile for a program first!

• The makefile expects a “matched pair” of source names
– C driver filename is mycodec.c

– Assembly filename is mycode.s

• The make file uses macro substitutions for input:
– The format of the make command is:

make A=mycode

Note: Examples are located in: ~bobw/cs341/examples/lecture06

19

Example: Function cpuid

• C “driver” in file cpuidc.c to execute code in cpuid.s
/* cpuidc.c - C driver to test cpuid function

* bob wilson - 1/15/2012

*/

#include <stdio.h>

extern char *cpuid(); /* our .s file is external*/

int main(int argc, char **argv)

{

printf("The cpu ID is: %s\n", cpuid());

return 0;

}

20

Example: Function cpuid

• Assembly code for function in file cpuid.s
cpuid.s C callable function to get cpu ID value

.data

buffer:

.asciz "Overwritten!" # overwritten later

.text

.globl _cpuid

_cpuid:

movl $0,%eax # zero to get Vendor ID

cpuid # get it

movl $buffer, %eax # point to string buffer

movl %ebx, (%eax) # move four chars

movl %edx, 4(%eax) # move four chars

movl %ecx, 8(%eax) # move four chars

ret # string pointer is in %eax

.end

21

Self Modifying Code

• Our assembler does not actually support cpuid

instruction, so I made the code self-modifying:
. . .

_cpuid:

movb $0x0f, cpuid1 # patch in the cpuid first byte

movb $0xa2, cpuid2 # patch in the cpuid second byte

movl $0,%eax # input to cpuid for ID value

cpuid1: # hex for cpuid instruction here

nop # 0x0f replaces 0x90

cpuid2:

nop # 0xa2 replaces 0x90

. . .

22

Self Modifying Code

• Obviously, the self modifying code I used for

this demonstration would not work if:

– The code is physically located in PROM/ROM

– There is an O/S like UNIX/Linux that protects the

code space from being modified (A problem that

we avoid using the Tutor VM)

• Try justifying the “kludge” in the next slide to

the maintenance programmer!!

Self Modifying Code in C
int main(int argc, char **args)

{

char function [100]; // array to hold the machine code bytes of the function

// I put machine code instructions byte by byte into the function array:

// Instruction 1: movl the &function[6] to the %eax (for return value)

// Instruction 2: the machine code for a ret instruction (0xc3)

// Following the ret instruction, I put the bytes of the string “Hello World”

// with a null terminator into the array starting at function[6]

function[0] = 0xb8; // op code for movl immediate data to %eax

function[1] = (int) &function[6] & 0xff; // immediate data field

function[2] = (int) &function[6] >> 8 & 0xff; // little endian format

function[3] = (int) &function[6] >> 16 & 0xff; // four bytes for the

function[4] = (int) &function[6] >> 24 & 0xff; // address of the string

function[5] = 0xc3; // op code for ret

function[6] = 'H'; // string whose address is returned is stored here

. . . // rest of characters in string omitted for clarity

function[17] = 0; // null terminator for the string

// execute the function whose address is the array

printf("%s\n", (* (char * (*)()) function) ());

return 0;

}
23

