
1

Homework

• Reading

– PAL, pp 127-152

• Machine Projects

– MP2 due at start of Class 12

• Labs

– Continue labs with your assigned section

2

Jumps and Flow of Control

• In assembly language, there are NO “if-else”,

“for”, “do”, or “do … while” statements as in C

• Must use some combination of conditional and

unconditional “jump” instructions for if-else

branching or looping

• Jump instruction is similar to a C “go to”

• Jump instruction is similar to “call” instruction,

but it doesn’t push a return address via %esp

3

Jumps and Flow of Control

• When the processor is fetching and executing
instructions, it follows this cycle:

– Fetches an instruction from memory using %eip

– Executes the instruction

– Increments %eip to point to the next instruction

• When a jump is executed, the last step of the
fetch and execute cycle may be the loading of
a different value into the %eip instead of the
address for the next instruction in sequence

4

Jumps and Flow of Control

• Because there are no “structured programming”

statements in assembly language, it may not be

possible to use pseudo-code for the design

• The design technique that best supports logic for

an assembly language program is the flowchart

• The flow chart has circles that represent labels

and arrows that represent go-to’s

5

Jumps and Flow of Control

• If-Else

if (test)

statement1;

else

statement2;

test
One or more flags

are set or reset

statement1

True

False
Conditional

Jump

statement2

Unconditional

Jump

6

Jumps and Flow of Control

• If-else in assembly code:

cmpl $0, %eax # test value of eax for zero

jnz else

. . . # statement1

jmp end # and jump over statement2

else: # just a label

… # statement2

end:

… # next instruction after if-else

7

Jumps and Flow of Control

• Iterative Loop

while (test) {

body;

}

test
One or more flags

are set or reset

body

Unconditional

Jump

True

False
Conditional

Jump

8

Jumps and Flow of Control

• While loop in assembly code:

movl $3, %eax # loop three times

while: # note – just a label

cmpl $0, %eax # test value of eax for zero

jz end # exit if counted down to zero

… # body of loop here

subl $1, %eax # decrement eax

jmp while # loop

end:

… # next instruction after loop

9

Unconditional Jumps

• “Unconditional jump” always loads %eip with
a new value:

– Hard coded address

jmp 0x10ec # hard coded address

. . .

– Label for address

jmp label # address of a label

. . .

label:

10

An Infinite Loop

• The following is an infinite loop based on a

single unconditional jump instruction:

movl $0, %eax

movl $2, %ecx

xyz:

addl %ecx, %eax

jmp xyz

11

Conditional Jumps

• “Conditional jump” may or may not load %eip

with a new value

• When your code performs instructions, specific

flags in %eflag may get set (=1) or reset (=0)

• Depends on the definition of the instruction:
addb %bl, %al # affects zero and carry flags

%al

%bl

%al

1 0 1 1 0 0 0 1

1 0 0 1 0 0 1 0

0 1 0 0 0 0 1 11

Carry

Flag

0

Zero

Flag

12

Flags

• Flags are set by arithmetic or logical instructions:

– Carry Flag – Set by a carry out / borrow in at MSB

– Zero Flag – Set if entire byte, word, or long == 0

– Sign Flag – Set if sign bit == 1

– Parity Flag – Set if 8 LSB’s contain an even number of 1’s

– Overflow Flag – Set by a carry into sign bit w/o a carry out

– Auxiliary Carry Flag – Set by a carry / borrow in 4 LSBs

• These flags are individual bits in the %eflag register

• Specific flag settings control the behavior of specific
conditional jump instructions

13

Conditional Jumps

• Operation of conditional jump:
If (state of specific flags)

Load a new value based on operand into %eip

Else

Let the %eip be incremented to next sequential instruction

• Examples:
jz label # if zero flag is set

js label # if sign flag is set

jnz label # if zero flag not set

jns label # if sign flag not set

. . .

label:

14

Conditional Jumps

• Be careful about the meaning of flag bits!

• C code:
if (al < bl) eax = 1; else eax = 0; /* compute boolean value */

• Gas code (buggy):
assume values already in %al and %bl

subb %bl, %al # set/reset sign flag

js sib # jump if sign flag set

movl $0, %eax # %al is bigger or =

jmp end # don’t fall through

sib: movl $1, %eax # %bl is bigger

end: ret # return value 0 or 1

• Bug is ignoring overflow flag!

15

Signed Comparisons

• Is it true?:

A < B if and only if A – B is negative

• Not with fixed register sizes that can overflow!

Example test in signed character (1 byte) arithmetic:

Is 100 < -50?

No, but 100 - (-50) = -106 (Due to overflow!)

100 01100100

- -50 + 00110010 (Add two’s compliment of -50)

- 106 10010110 (Sets sign flag and sets overflow flag)

Note: Carry into sign bit without a carry out Set overflow flag!

16

Signed Comparisons

• If overflow occurs, the sign flag value will be
the opposite of what it should be!

• So we need our jump condition to be:

– If overflow flag == 0, jump if sign flag == 1

– If overflow flag == 1, jump if sign flag == 0

• Same as:

– Jump if (sign flag XOR overflow flag) == 1

– Hence, useful Intel instruction “jump less than”:

jl label # jump if (SF xor OV) is set

17

Signed Comparisons

• Proper interpretation of flag bits!

• C code:

if (al < bl) eax = 1; else eax = 0; /* compute boolean value */

• Gas code (bug fixed for SIGNED data):
assume values already in %al and %bl

subb %bl, %al # set/reset sign flag

jl sib # jump less than

movl $0, %eax # %al is bigger or =

jmp end # don’t fall through

sib: movl $1, %eax # %bl is bigger

end: ret # return value 0 or 1

18

Signed Comparisons

• Compare Command

– Sets the flags according to a subtraction

– Does not save the result of the subtraction

– Does not overwrite values in the registers being

compared (just sets the flag bits)

19

Signed Comparisons

• Proper interpretation of flag bits!

• C code:

if (al < bl) eax = 1; else eax = 0; /* compute boolean value */

• Gas code (using cmpb instead of subb):
assume values already in %al and %bl

cmpb %bl, %al # set/reset flags

jl sib # jump less than

movl $0, %eax # %al is bigger or =

jmp end # don’t fall through

sib: movl $1, %eax # %bl is bigger

end: ret # return value 0 or 1

20

Conditional Jumps (Signed)

• Jump Condition

– jl less than

– jle less than or equal

– jg greater than

– jge greater than or equal

– je equal

– jncc NOT of each of the above conditions

21

Unsigned Comparisons

• Is it true?:

A < B if and only if A – B is “negative”

• Carry Flag will indicate underflow

– Example test in unsigned character arithmetic:

– Is 100 < 206? (206 = same bits as -50 was before)

– Yes (because now the “sign bit” is 27)

100 01100100

- 206 + 00110010 (Add two’s compliment of 206)

150 10010110 (Underflows = goes below zero)

Note: Underflow is a “Carry Error” Set Carry flag!

22

Unsigned Comparisons

• Meaning of the carry flag is reversed

• A carry means a correct positive result after an
unsigned subtraction, so carry flag = 0

• If underflow occurs, the carry flag = 1 will be
indicator of an unsigned “negative” result!

• So we need our jump condition to be:

– If carry == 1, jump

– If carry == 0, don’t jump

• Hence, useful Intel instruction “jump below”:

jb label # jump if CF is set

23

Unsigned Comparisons

• Proper interpretation of flag bits!

• C code:
if (al < bl) eax = 1; else eax = 0; /* compute boolean value */

• Gas code (bug fixed for UNSIGNED data):
assume values already in %al and %bl

cmpb %bl, %al # set/reset carry flag

jb sib # jump below

movl $0, %eax # %al is bigger or =

jmp end # don’t fall through

sib: movl $1, %eax # %bl is bigger

end: ret # return value 0 or 1

24

Conditional Jumps (Unsigned)

• Jump Condition

– jb below

– jbe below or equal

– ja above

– jae above or equal

– je * equal *

– jncc NOT of each of the above conditions

– * Note: Same instruction as signed jump

25

loop Instruction

• Loop instruction = Decrement, Test, and Jump

• Instruction explanation:
Decrement %ecx

If %ecx != 0

Jump to label (Back to beginning of loop)

Else

Continue in sequence (Ends the loop)

• Example:
movl $0x0a, %ecx # loop 10 times

label:

(instructions in loop)

loop label

(next instruction after loop)

26

Scanning Pointer Problem
• Want to sum up the elements in an array of N elements

.data

iarray: .long 1, 4, 9, 16 # n = 4 in example

• The code might look like this:

_sumarray:xorl %eax, %eax # initial sum = 0

movl $4, %ecx # initial loop count

movl $iarray,%edx # initial pointer value

add1: addl (%edx), %eax # add in next element

addl $4,%edx # bump pointer

loop add1 # test and loop

ret

27

inc and dec Instructions
• Incrementing and decrementing by one

• Useful inside loops

• C code: (Inc/dec pointers by size of the data type!)

i++; or i--;

• Gas incrementing and decrementing registers

incl %eax decl %eax

• Gas incrementing and decrementing memory

incl index decl index

(Inc/dec pointers by one – not by size of the data type!)

