
1

Homework

• Reading

– Intel 8254 Programmable Interval Timer (PIT)

Data Sheet

• Machine Projects

– Continue on MP3

• Labs

– Continue in labs with your assigned section

2

Restrictions on ISR Code

• Software that was executing never got a
chance to save any registers it was using!

• ISR must save context (not use ANY registers
without pushing them on stack and popping
them off before returning from the interrupt)

• ISR must finish its execution promptly

• Two additional considerations:

– Interrupt windows / critical regions

– C keyword “volatile”

ISR and Background Code

• ISR and background code design must be careful

interacting via shared memory to avoid “interrupt

windows”

• With a multithreaded OS, this issue is called:

– “Thread Safety” or

– “Synchronized Access to Critical Regions”

• Must be handled by design because problems are

very hard to detect – never mind fix - in testing

• Causes problems that can not be reproduced
3

4

ISR and Background Code

• Note following sequence in background code:
inb (%dx), %al

orb $0x01, %al

outb %al, (%dx)

• With this sequence in ISR code:
pushl %eax

pushl %edx

inb (%dx), %al

orb $0x10, %al

outb %al, (%dx)

popl %edx

popl %eax

iret

Interrupt Occurs Here!

ISR returns Here!

5

ISR and Background Code

• If a sequence of instructions in background must
not be interrupted, that software must:

“inhibit” interrupts before starting (cli instruction)

“enable” interrupts after finishing (sti instruction)

(sti and cli instructions set or clear IF in %eflags)

• Must not disable interrupts for very long!!

• This is commonly done in software that initializes
an I/O device to operate under interrupt control –
preventing an interrupt from occurring prematurely

6

ISR and Background Code

• Corrected sequence in background code:
cli # disable interrupts

inb (%dx), %al

orb $0x01, %al

outb %al, (%dx)

sti # reenable interrupts

• Now it does not conflict with this sequence in ISR:
…

inb (%dx), %al

orb $0x10, %al

outb %al, (%dx)

…

iret

ISR can not execute within

this section of code

C Keyword “volatile”

• A similar issue that can arise in C coding for

embedded systems is that the compiler may

optimize code incorrectly if it is not warned that

a variable can change its value unexpectedly

• A shared memory location or memory mapped

I/O register may change its value without any

compiler generated code causing the change

• Compiled code may read a value into a register

and fail to reread it later because it “thinks” that

it already has “cached” the value in the register7

C Keyword “volatile”

• To prevent this, the programmer must warn the

compiler that this can happen using the keyword

“volatile” in the variable declaration

– Example for ISR/BG shared memory location:

volatile int foobar;

– Example for pointer to memory mapped I/O register:

volatile unsigned char *port;

• Compiler generated code will always read current

value for a “volatile” variable from memory
8

9

Programmable Interval Timer

• This is just an overview – Read data sheet

• 8254 VLSI chip with three 16 bit counters

• Each counter:

– Is decremented based on its own input clock

– Is only decremented while its gate is active

– Generates its own output clock =

input clock / count length

– Generates an interrupt when count value reaches zero

– Automatically reloads initial value when it reaches zero

10

PIT Device (Timer 0)

• Simplest device: always is interrupting, every
time it down counts to zero

• Can’t disable interrupts in this device!

• Can mask them off in the PIC

• We can control how often it interrupts

• Timer doesn’t keep track of interrupts in
progress—just keeps sending them in

• We don’t need to interact with it in the ISR (but
we do need to send an EOI to the PIC)

11

Use of PIT in MP3

• We use PIT counter 0 with 18.2 Hz output to

generate an interrupt every 55 millisecs

• MP3 gives you the boilerplate for the required

PIT driver code in tickpack.c.

• You finish the hardware related lines of code:

– Init must set up and enable PIT interrupts

– ISR must invoke provided callback function

– Stop must disable PIT interrupts

• Test with PC-Tutor and use as basis for MP5

12

Timer Interrupt Software

• Initialization

– Disallow interrupts in CPU (cli)

• Unmask IRQ0 in the PIC by ensuring bit 0 is 0 in the Interrupt
Mask Register accessible via port 0x21

• Set up interrupt gate descriptor in IDT, using irq0inthand

• Set up timer downcount to determine tick interval

– Allow interrupts (sti)

• Shutdown

– Disallow interrupts (cli)

• Disallow timer interrupts by masking IRQ0 in the PIC by making
bit 0 be 1 in the Mask Register (port 0x21)

– Allow interrupts (sti)

13

Timer Interrupts:

Interrupt Handler (Two Parts)
•irq0inthand – the outer assembly language

interrupt handler

– Save registers

– Calls C function irq0inthandc

– Restore registers

– Iret

•irq0inthandc - the C interrupt handler

– Issues EOI

– Calls the callback function, or whatever is wanted

14

PIT Characteristics

• PIT chip has four I/O ports assigned to it:

A1 A0

– Timer 0 assigned port 40 = 0100 0000

– Timer 1 assigned port 41 = 0100 0001

– Timer 2 assigned port 42 = 0100 0010

– Control assigned port 43 = 0100 0011

– Chip selected by “chip select” and A1-A0

– Other signals include read, write, and data

15

Control Word Format

• Actually only a byte:

• SC1-SC0 select which counter to write/read

• RW1-RW0 to latch value or select which byte of
count value

• M2-M0 determines which operating mode

• BCD specifies whether binary or BCD count

• Command formats found in datasheet

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

16

Custom C Library Symbolic Constants

• Refer to timer.h
#define TIMER0_COUNT_PORT 0X40

#define TIMER_CNTRL_PORT 0X43

/* bits 6-7: */

#define TIMER0 (O<<6)

#define TIMER1 (1<<6)

/* Bits 4-5 */

#define TIMER_LATCH (0<<4)

#define TIMER_SET_ALL (3<<4)

/* Bits 1-3 */

#define TIMER_MODE_RATEGEN (2<<1)

/* Bit 0 */

#define TIMER_BINARY_COUNTER 0

17

• Bits to initialize
TIMER0 | TIMER_SET_ALL | TIMER_RATEGEN

|TIMER_BINARY_COUNTER

• Output to the timer I/O port
outpt(TIMER_CNTRL_PORT, …);

• Then load the downcount
outpt(TIMER0_COUNT_PORT, count & 0xFF);

// LSByte

outpt(TIMER0_COUNT_PORT, count >> 8);

// MSByte

Custom C Library Symbolic Constants

Custom C Library Functions

• The cpu.h library functions to enable/disable

all interrupts in the processor
/* do CLI instruction, clear I bit in EFLAGS,

to disable interrupts in CPU */

void cli(void);

/* do STI instruction, set I bit in EFLAGS,

to enable interrupts in CPU */

void sti(void);

• Samples for Usage

cli(); /* disable interrupts */

sti() /* enable interrupts */
18

Custom C Library Functions

• The pic.h library functions to enable/disable PIC
/* Command PIC to let signals for a specified IRQ get through to CPU.

Works for irqs 0-15, except 2, which is reserved for cascading to

the slave chip. */

void pic_enable_irq(int irq);

/* Command PIC to stop signals on line irq from reaching CPU. */

void pic_disable_irq(int irq);

• Examples of Usage for IRQ0 (PIT):
#define TIMER0_IRQ 0 /* defined in timer.h */

pic_enable_irq(TIMER0_IRQ);

pic_disable_irq(TIMER0_IRQ);

19

Custom C Library Functions

• The cpu.h library function to set idt gate:
/* write the nth idt descriptor as an interrupt gate to inthand_addr

We use an argument of type pointer to IntHandler here so we can

reestablish a saved interrupt-handler address (such a variable

would need type pointer-to-function, and would not match a

parameter type of IntHandler here--an obscure C gotcha. */

void set_intr_gate(int n, IntHandler *inthand_addr);

• Example of usage for IRQ0 (PIT) interrupt:
/* irq 0 maps to slot n = 0x20 in IDT for linux setup */

#define IRQ_TO_INT_N_SHIFT 0x20 /* defined in pic.h */

set_intr_gate(TIMER0_IRQ+IRQ_TO_INT_N_SHIFT, &irq0inthand);

20

