Homework

- Reading
 - Tokheim, Chapter 3, 4, and 6.1 6.3
 - Free Digital Logic Simulator website
- Machine Projects
 - Continue on mp3
- Labs

- Continue in labs with your assigned section

Digital Logic

- Two types of digital logic design
 - Combinational Logic has no memory elements
 - Sequential Logic contains memory elements
- Combinational logic design is sometimes called Boolean algebra after George Boole
 - Based on binary logic
 - Uses AND, OR, XOR, NOT, etc.
 - Develop truth tables and implement a design

- Variables / Expressions
 Two Values Only (0 or 1)
- Basic Operators

*

- AND
- OR +
- XOR +
- NOT Bar over the variable or expression Or # after variable name

- Precedence of Operators
 - NOT (like unary minus)
 - AND (like multiply)
 - Division None
 - OR/XOR (like add)
 - Subtraction None
- Parentheses to force precedence
 A * (B + C) is not the same as A * B + C

- Multiplicative Identities
 - A * 0 = 0 $A * \underline{A} = A$ (Note: Not A squared) $A * \overline{A} = 0$
- Additive Identities

$$A + 1 = 1$$

$$A + \underline{A} = A$$
 (Note: Not 2A)

$$A + \overline{A} = 1$$

• Negative Identity

$$\overline{A} = A$$

- Commutative Property
 - A * B = B * A

A + B = B + A

Distributive Property
 A (B + C) = A * B + A * C

 Common Reductions of Sums of Products (Also called a "Minterm" expression)

$$A * B + A * B + A * B = A + B \qquad OR$$

A * B + A * B = A + B XOR

 Common Reductions of Products of Sums (Also called a "Maxterm" expression)

$$(A + B) * (\overline{A} + B) * (A + \overline{B}) = A * B$$
 AND

Binary Logic Symbols/Tables

NOT	
0	1
1	0

AND	0	1
0	0	0
1	0	1

NAND	0	1
0	1	1
1	1	0

Binary Logic Symbols/Tables

OR	0	1
0	0	1
1	1	1

NOR	0	1
0	1	0
1	0	0

XOR	0	1
0	0	1
1	1	0

Boolean Algebra / Logic Diagram

- Sample Boolean Equation Y = (A + B) * $(\overline{C + D})$
- Equivalent Logic Diagram

Timing Considerations

 Can look at pulse trains through combinational logic over time rather than just constant inputs

Timing Considerations

- Things don't happen instantaneously
 - -Each signal arrives at some unique time
 - -Gate logic takes some time to react
 - -Changes in the output appear some time after changes to the inputs (at nanosecond level)
- Example, an AND gate

Timing Considerations

- Things don't happen instantaneously
 - -As clock speed increases, the "skew" due to differential delays narrows output pulses
 - -Beyond the designed maximum clock speed, the circuit may fail
- Example, an AND gate

Free Logic Design Tool

- Practical software design tools such as VHDL are now being used in industry instead of building and testing physical "breadboards"
- VHDL is complex and has a learning curve
- Logic Gate Simulator is a simple design tool
- Allows us to design and test simple hardware logic via software building and simulation
- Download:

https://www.kolls.net/gatesim/

Free Logic Design Tool

🗫 [Untitled] (Modified) - Logic Gate Simulator

– 🗗 🗙

Free Logic Design Tool

- Demonstration in Class
 - Button
 - Indicator
 - Inverter
 - And Gate
 - Or Gate
 - Exclusive-Or Gate