#### Homework

Reading

– Tokheim Chapter 9.1 – 9.6

- Machine Projects
  Continue on mp3
- Labs

- Continue in labs with your assigned section

#### **Sequential Circuits**

- A sequential circuit is constructed using a combinational circuit with memory circuits
- Similar to a C function with static internal variables (state memory)
- One additional input is a clock signal



## Simple Memories (Flip-Flops)

- Simplest is Reset-Set (R-S type)
- Note the inverted signal inputs
- Can buy a standard TTL R-S flip-flop (279)

| S      | R      | Q                       | Q |
|--------|--------|-------------------------|---|
| 0      | 1      | 1                       | 0 |
| 1      | 0      | 0                       | 1 |
| 1<br>0 | 1<br>0 | no change<br>prohibited |   |
|        |        |                         |   |



## Simple Memories (Flip-Flops)

 Timing Diagram No No Hold Set Hold Reset Hold Hold Effect Effect S 0 R 0 1  $\mathbf{0}$ 0

#### Synchronous Flip-Flops

- Use of a clock to make the circuit synchronous
- Syn (with) + chronous (clock) => with a clock
- Level-triggered (changes state while clock high)



# The D-Type Flip-Flop

- Single data input and edge-triggered clock
- Also called a "Delay" flip-flop (D-type)
- Changes state on either rising or falling edge



# Actual D-Type Flip-Flop

- Has preset (PR) and clear (CLR) inputs which can be set asynchronously (but not both at same time)
- Nomenclature use > for an edge-triggered input



#### **Reset Circuitry**

- When power is turned on, there is a time delay for power to reach each part of the circuit and to stabilize at the rated voltage
- We need to apply a reset signal for longer than that time delay to all memories
- Reset signal presets (to 1) or clears (to 0) every flip-flop in the system as needed
- Reset signal is released after a time delay
- Reset button causes reset signal to be asserted and released again after time delay





(d) An alternative form of the timing diagram

#### Clock - Divide by Two Counter

• Connect  $\overline{Q}$  output back to D input



• Timing Diagram (after starting with Q = 0)



Q is an output clock at 1/2 the frequency of the input clock

#### Shift Registers

• Serial in, Parallel out:

Four Bit Parallel Output Available After Four Clocks/Shifts



#### Shift Registers

• Parallel in, Serial out:

Four Bit Parallel Input Presented for One Clock Edge while "Load" Signal is True



#### The J-K or Universal Flip-Flop

- Named for Jack Kilby (TI Engineer / Inventor of IC)
- Three synchronous inputs (plus preset and clear)
- J-K flip-flop is available as a 7473 chip
- Can be edge-triggered or level-triggered
- Example shown is falling "edge triggered"



#### J-K Flip-Flop Internals

• Avoids an invalid input such as 0 0 to the R-S Flip Flop



## Using J-K Flip-Flops

- Primary use is for storage registers and counters
- Mod-16 counter also known as a ripple counter

X<sub>3</sub> X<sub>2</sub> X<sub>1</sub> X<sub>0</sub> counts 0x0 ... 0xF (Hexadecimal) sequentially



#### Timing diagram for Mod-16 Counter



Fig. 8-3 Timing diagram for a mod-16 ripple counter

#### Note that the counter actually serves to divide down the input clock!



Can we we make it count to something different than 2<sup>N</sup>? Ans. Yes, using a combinational logic (a NAND Gate in this case) Counts: 0, 1, 2, 3, 4, 5, 0, 1, ...

#### Synchronous BCD up/down counter

- BCD Up/Down Counter is available as a 74192
- BCD stands for Binary Coded Decimal
- Counts 0000 -1001, then carries LED Bit Display



## **Describing Sequential Circuits**

- In general,
  - Next state = f(inputs, current state)
  - -Outputs = f(inputs, current state)



# **Digital Logic Summary**

- Combinational circuits:
  - -Made from gates without feedback
  - -Have no internal states
  - -Outputs depend only on current inputs
  - -Fully defined by truth table on the inputs
  - -Passes clocks (if any) as wave trains
  - -Output states constantly change with inputs

# **Digital Logic Summary**

- Sequential circuits:
  - -Have feedback among the gates
  - -Can have internal states
  - -Outputs depend on inputs and past inputs (via values of internal states)
  - Not completely described by pure truth table on inputs
  - -Usually one input is a clock signal
  - -Outputs usually change on one clock edge only