Homework

- Reading
- Tokheim Chapter 9.1-9.6
- Machine Projects
- Continue on mp3
- Labs
- Continue in labs with your assigned section

Sequential Circuits

- A sequential circuit is constructed using a combinational circuit with memory circuits
- Similar to a C function with static internal variables (state memory)
- One additional input is a clock signal

Simple Memories (Flip-Flops)

- Simplest is Reset-Set (R-S type)
- Note the inverted signal inputs
- Can buy a standard TTL R-S flip-flop (279)

\bar{S}	\bar{R}	Q	\bar{Q}
0	1	1	0
1	0	0	1
1	1	no change	
0	0	prohibited	

Simple Memories (Flip-Flops)

- Timing Diagram Hold Set Hold $\begin{aligned} & \text { No } \\ & \text { Effect }\end{aligned}$ Reset Hold $\begin{aligned} & \text { No } \\ & \text { Effect Hold }\end{aligned}$

Synchronous Flip-Flops

- Use of a clock to make the circuit synchronous
- Syn (with) + chronous (clock) => with a clock
- Level-triggered (changes state while clock high)

The D-Type Flip-Flop

- Single data input and edge-triggered clock
- Also called a "Delay" flip-flop (D-type)
- Changes state on either rising or falling edge

Actual D-Type Flip-Flop

- Has preset (PR) and clear (CLR) inputs which can be set asynchronously (but not both at same time)
- Nomenclature use > for an edge-triggered input

Reset Circuitry

- When power is turned on, there is a time delay for power to reach each part of the circuit and to stabilize at the rated voltage
- We need to apply a reset signal for longer than that time delay to all memories
- Reset signal presets (to 1) or clears (to 0) every flip-flop in the system as needed
- Reset signal is released after a time delay
- Reset button causes reset signal to be asserted and released again after time delay

Example Reset Circuitry

Timing Diagrams for D Flip-Flop

(c) The general form of the timing diagram

(d) An alternative form of the timing diagram

Clock - Divide by Two Counter

- Connect \bar{Q} output back to D input

- Timing Diagram (after starting with $\mathrm{Q}=0$)

CIk

Q

Q is an output clock at $1 / 2$ the frequency of the input clock

Shift Registers

- Serial in, Parallel out:

Four Bit Parallel Output Available After Four Clocks/Shifts

Shift Registers

- Parallel in, Serial out:

Four Bit Parallel Input Presented for One Clock Edge while "Load" Signal is True

The J-K or Universal Flip-Flop

- Named for Jack Kilby (TI Engineer / Inventor of IC)
- Three synchronous inputs (plus preset and clear)
- J-K flip-flop is available as a 7473 chip
- Can be edge-triggered or level-triggered
- Example shown is falling "edge triggered"

TRUTH TABLE

J-K Flip-Flop Internals

- Avoids an invalid input such as 00 to the R-S Flip Flop

Using J-K Flip-Flops

- Primary use is for storage registers and counters
- Mod-16 counter also known as a ripple counter
$X_{3} X_{2} X_{1} X_{0}$ counts $0 \times 0 \ldots 0 \times F$ (Hexadecimal) sequentially

Timing diagram for Mod-16 Counter

Fig. 8-3 Timing diagram for a mod-16 ripple counter
Note that the counter actually serves to divide down the input clock!

Counter Range != 2^{N}

Can we we make it count to something different than 2^{N} ?
Ans. Yes, using a combinational logic (a NAND Gate in this case) Counts: 0, 1, 2, 3, 4, 5, 0, 1, ...

Synchronous BCD up/down counter

- BCD Up/Down Counter is available as a 74192
- BCD stands for Binary Coded Decimal
- Counts 0000-1001, then carries Led bit Display

Describing Sequential Circuits

- In general,
- Next state $=f$ (inputs, current state)
- Outputs $=f$ (inputs, current state)
- Example:

A		Next State Q1 Q2	X
0	00	01	0
1	00	10	0
0	01	00	0
.			
-	.	-	
-	${ }^{\bullet}$	\cdots	-
0	11	01	1
1	11	11	1

- State diagram:

Digital Logic Summary

- Combinational circuits:
-Made from gates without feedback
-Have no internal states
-Outputs depend only on current inputs
-Fully defined by truth table on the inputs
-Passes clocks (if any) as wave trains
-Output states constantly change with inputs

Digital Logic Summary

- Sequential circuits:
-Have feedback among the gates
-Can have internal states
-Outputs depend on inputs and past inputs (via values of internal states)
-Not completely described by pure truth table on inputs
-Usually one input is a clock signal
-Outputs usually change on one clock edge only

